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Abstract

Background: Pituitary Adenylate Cyclase Activating Peptide (PACAP) has a significant protective effect
on nerve cell damage induced by several neurotoxins. The ubiquitin proteasome inhibitor lactacystin,
one new neurotoxin, could cause cell damage by inducing dopaminergic cells apoptosis. Whether
PACAP has a protective effect on lactacystin-induced cytotoxic model has not been reported.
Aims: The present study was designed to explore whether PACAP can effectively inhibit the lactacystin-
induced dopaminergic apoptosis.
Methods: Pheochromocytes (PC12 cells) differentiated by nerve growth factor as neurons were treated
with lactacystin (20 μmol/l) for 24 h, to establish the Parkinson's disease cells model. Groups are set up
as control group, lactacystin group, PACAP1-27 intervention group, PACAP1-27 and PACAP6-27 co-
intervention group.
Results: Treatment with lactacystin can make the cell vitality obviously decline. Compared with control
group, cell morphology presented obviously damaged change in lactacystin group. After treatment with
lactacystin, the expression of mitochondrial bcl-2 dramaticly decreased, expression of mitochondrial bax
had no change, the rate of bcl-2/bax dramaticly decreased, and thus expression of caspase-3 increased.
Meanwhile, caspase-12, the characteristic marker of endoplasmic reticulum stress, increased
significantly in lactacystin group. However, these changes could be partly reversed by treatment with
PACAP1-27. This protective effect of PACAP1-27 was negated by PACAP6-27, a receptor antagonist of
PACAP1-27.
Conclusion: Lactacystin led to cell damage by inducing mitochondrial damage and endoplasmic
reticulum stress; PACAP1-27 played a protective role by regulating the mitochondrial and endoplasmic
reticulum related dual signal pathway. As one PACAP1-27 receptor antagonist, PACAP6-27 attenuated
this effect of PACAP1-27.
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Introduction
Parkinson's disease is a clinic common neurodegenerative
disorder, and characterized by the progressive loss of
dopaminergic neurons in the substantia nigra. There is still no
effective therapies [1]. In order to investigate the pathogenesis
of Parkinson's disease and find effective treatment, we need to
establish experimental Parkinson's disease cell model. Many
scholars used methyl-phenyl-tetrahydropyridine and 6-

hydroxy-dopamine for preparation of Parkinson's disease cell
model, but both models are characterized with lack of Lewy
body. Rideout et al. [2] applied lactacystin in bare PC12 cells
and PC12 cells differentiated by nerve growth factor, and
found a dose-related drug-induced cell death, the death can be
inhibited by caspase inhibitor. They also found that the
ubiquitin-stained positive inclusion bodies in living cells, and
human α-synuclein homologous synuclein-1 staining also
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showed positive results. The cell model induced by lactacystin
mimics the Lewy bodies of the Parkinson's disease and
apoptosis [3-5].

PACAP is a neuropeptide with multiple effects, and belongs to
the secretin/glucagon/vasoactive intestinal peptide family.
There are two structural forms: PACAP27 and PACAP38.
PACAP27 can spread freely across the blood-brain barrier in
non-saturation manner [6]. PACAP27 may have potential
practical value. PACAP27 has two forms: PACAP1-27 and
PACAP6-27. Some studies have found that PACAP1-27 has a
significant protective effect on nerve cell damage induced by
excitatory amino acids, β-amyloid and prion protein [7]. But
whether PACAP1-27 has a protective effect in lactacystin-
induced cytotoxic model has not been reported. Therefore, the
study explored the protective effect of PACAP1-27 and its
related molecular mechanisms in lactacystin-induced cytotoxic
model.

Materials and Methods
This was designed as a controlled cell study. Experiments were
performed at the central laboratory, Yantai Yuhuangding
Hospital, Yantai, PR China, between April 2011 and November
2013.

Materials
10% fetal bovine serum (Australia NQBB Company); 1640
culture medium (China HyClone Company); Nerve growth
factor (China HyClone Company); Lactacystin (British
Cayman Company); Rabbit anti-rat caspase-3 antibody
(English abcam Company); Rabbit anti-rat caspase-12 antibody
(English abcam Company); Rabbit anti-rat bcl-2 antibody (Cell
Signaling company American); Rabbit anti-rat bax antibody
(U.S. Cell Signaling Company); GAPDH antibody (English
abcam Company); PACAP1-27 (U.S. Tocris Bioscience
Corporation American); PACAP6-27 (U.S. Biological
Corporation American); MTT (Sigma USA); Bicinchoninic
acid protein assay kit (U.S. Pierce Company).

Methods
Cell culture: PC12 cells supplemented with 10% fetal bovine
serum and 1640 culture medium were cultured at 5% carbon
dioxide, 37°C incubator. The medium was changed every other
day. PC12 cell was induced by 7 d treatment with nerve growth
factor (0.1 ng/l) to neuron-like cells.

Drug treatment: The cells were divided into four groups:
control group, lactacystin group, PACAP1-27 intervention
group, PACAP1-27 and PACAP6-27 co-intervention group.

PC12 cells differentiated by nerve growth factor (0.1 ng/l) for
7 d as the control group, then added to lactacystin of different
concentrations (5, 10, 20, 40 μmol/l) processing PC12 cells
separately for 0, 6, 12, 24 h, the cell viability present
concentration and time dependent-on decline, lactacystin of 20
μmol/l for 24 h can make the cell vitality decline about 50%.

Then the 20 μmol/l lactacystin for 24 h was selected for the
lactacystin group in the study.

Control group: PC12 cells differentiated by nerve growth
factor (0.1 ng/l) for 7 d.

Lactacystin group: PC12 cells differentiated by nerve growth
factor (0.1 ng/l) for 7 d, then added to 20 μmol/l lactacystin for
24 h.

PACAP1-27 intervention group: PC12 cells of lactacystin
group added to PACAP1-27 (10-8) for 24 h. PACAP1-27 and
PACAP6-27 co-intervention group: PC12 cells of lactacystin
group added to PACAP1-27 (10-8) and PACAP6-27 (10-5) for
24 h.

MTT assay: The viability of cultured cells was evaluated
using the MTT colorimetric assay. MTT is an indicator of
mitochondrial respiration and MTT reduction is mediated by
active mitochondrial succinate dehydrogenase in living cells,
which has commonly been used to infer cellular viability. MTT
reduction was quantified at 570 nm using a micro-plate reader.

Cell morphology: After exposed to drugs for 24 h, each group
was placed under inverted microscope to observe cell
morphology, to observe changes of neurons and axons.

Western blots: Cells were collected and washed with ice-cold
PBS and lysed in lysis buffer. After incubation for 20 min on
ice, cell lysates were centrifuged (10,000 g for 10 min at 4°C)
and the protein concentration in the extracts was determined
using a bicinchoninic acid protein assay kit. Samples were
resuspended in Sodium Dodecyl Sulfate (SDS)-polyacrylamide
gel electrophoresis sample buffer and boiled for 5 min. A
volume of 20 μl of solubilized total cell lysate (15 μg protein)
was loaded per lane of a 10% polyacrylamide gel for carrying
out SDS-polyacrylamide gel electrophoresis, followed by
transfer onto a polyvinylidine fluoride membrane at 120 V for
120 min at 4°C using a Mini Trans-Blot Cell apparatus.
Membranes were blocked for 60 min at room temperature
(25°C) using 5% skimmed milk powder in Tris-buffered saline
(TBS; 10 mM Tris-HCl, 150 mM NaCl, PH 7.4 ) and then
probed with GAPDH antibody, rabbit anti-rat caspase-3 (1:
500), caspase-12 antibody (1: 500) and bcl-2 (1:500), bax
antibody (1: 500) overnight at 4°C The blots were washed
three times in TBS-T (with 0.05% tween-20) at room
temperature and then incubated with horseradish peroxidase-
conjugated secondary antibody diluted in TBS-T (1:2,000) for
1 h at room temperature, followed by washing four times.
Signals were detected with a chemiluminescence kit. The blots
were then removed from the working solution and exposed to
Kodak Biomax MS-1 films (Sigma) for 0.5-3 min. Quantitative
analysis of Western blots was carried out by calculating the
relative density of the target bands. To reduce the differences,
values of each band of sample were compared with that of
GAPDH.

Statistics
Statistical analysis was carried out using SAS 6.12 statistical
software, Data was expressed as mean ± SD, Groups were
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compared using analysis of variance, pairwise comparisons
using LSD-t-test, P<0.05 was considered statistically
significant.

Results

The cell viability of each group
After exposed to drugs for 24 h, the cell viability of each group
was measured. Compared with control group (100%), cell
activity of lactacystin group (50.1%) decreased, the cell
viability of PACAP1-27 intervention group (77.8%) was
enhanced compared with lactacystin group, and there was little
difference between PACAP1-27 and PACAP6-27 co-
intervention group (55.6%) and lactacystin group, the cell
viability of PACAP1-27 and PACAP6-27 co-intervention
group was lower than PACAP1-27 intervention group, the
difference was statistically significant (P<0.01) (Figure 1).

Figure 1. Cell viability changes of each group. A: Control group B:
Lactacystin group C: PACAP1-27 intervention group D: PACAP1-27
and PACAP6-27 co-intervention group. aP<0.01, vs. control group;
bP<0.01, vs. lactacystin group; cP<0.01, vs. PACAP1-27 intervention
group.

PC12 cell morphology
Pretreated with 20 μmol/l lactacystin for 24 h, PC12 cell
morphology changed significantly (Figure 2). The cells of
control group showed active proliferative capacity and had
larger size with significantly longer neurites. In lactacystin
group, cell size became smaller and neurites became shorter or
disappeared, and cell proliferative capacity declined.
Compared with lactacystin group, cell damage change in
PACAP1-27 intervention group was improved more obviously,
and the number of survival cells increased. In PACAP1-27 and
PACAP6-27 co-intervention group, the growth state of the cells
was not as good as that of PACAP1-27 intervention group, but
there was no difference with lactacystin group.

Western blot analysis of apoptosis protein expression
of each group
Compared with control group, the expression of bcl-2 in
lactacystin group dramatically decreased (P<0.01), bax
expression had no change, the ratio of bcl-2/bax dramatically
decreased (P<0.01), caspase-3 and caspase-12 activity
increased significantly (P<0.01). Compared with lactacystin
group, expression of bcl-2 in PACAP1-27 intervention group
dramatically increased (P<0.01), bax expression had no
change, the ratio of bcl-2/bax dramatically increased (P<0.01),
meanwhile the activity of caspase-3 and caspase-12 was
significantly downregulated (P<0.01); the effect of
PACAP1-27 was negated by PACAP6-27 (Figure 3).

Figure 2. Cell morphology of each group. A: Control group; B:
Lactacystin group; C: PACAP1-27 intervention group; D:
PACAP1-27 and PACAP6-27 co-intervention group. With drugs
treating for 24 h, PC12 cell morphology changes of each group
(Olympus inverted microscope X200).

Discussion
Parkinson's disease models with Lewy bodies established using
lactacystin reveals the proteasome function of substantia nigra
cells impaired, not only cannot clear α-synuclein and other
proteins of cytoplasm in time, but also is an important factor in
the formation of Lewy bodies and substantia nigra
degeneration eventually led to Parkinson's disease, and
provides an ideal experimental model for further research [2].

The study found that the impact of lactacystin on the vitality of
PC12 cells showed a dose-dependent-on decline, and that toxic
effects occur at low dose (5 μmol/l), and verify that low-dose
exposure to lactacystin can cause cell damage; the cell death
induced by lactacystin is mainly karyopyknosis apoptosis
observing by inverted microscope, further confirmed the
neurotoxic effects of lactacystin can cause apoptosis, and
lactacystin is an ideal Parkinson's disease-inducing agent in
vitro cell model.
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Figure 3. Analysis of apoptosis protein expression in each group.
(A)Western blot analysis of bcl-2, bax, caspase-3 and caspase-12 is
compared between groups. (B) Bands corresponding to bcl-2, bax,
caspase-3 and caspase-12 were scanned and their optical density
quantified by densitometry. A: Control group; B: Lactacystin group;
C: PACAP1-27 intervention group; D: PACAP1-27 and PACAP6-27
co-intervention group. aP<0.01, vs. control group; bP<0.01, vs.
lactacystin group; cP<0.01, vs. PACAP1-27 intervention group.

PACAP is an endogenous neuropeptide with a diverse array of
biological functions including anti-apoptosis, anti-
inflammation and anti-oxidative stress [8-10]. And PACAP
plays the anti-apoptosis role by regulating the cell expression
of apoptosis-related protein caspase-3, bcl-2, bax, caspase-12
etc. [11]. PACAP is widely distributed in the central and
peripheral nervous system [9]. PACAP is non-toxic in its own,
and can easily cross the blood-brain barrier from the
circulation into the brain parenchyma in a very short time
following intravenous or intraventricular injection. Therefore,
PACAP is a powerful emerging candidate as a therapeutic for
neurodegenerative diseases. Different neurotoxins can cause
caspase-3 activity increase and finally damage to cells [12],
PACAP1-27 can inhibit this increase of response [13,14]. Our
results show that lactacystin significantly increase the
caspase-3 activity in PC12 cells, PACAP1-27 can indeed
inhibit this increase. We found that this protective effect can be
reversed by specific antagonist PACAP6-27 of PACAP/VIP
typeI receptor (i.e. PAC1), and previous studies have found
PAC1 receptor mRNA expression in PC12 cells does exist
[13,15,16], we speculate that the inhibition effect of PACAP27
on the cell apoptosis induced by lactacystin may be mainly
mediated by PAC1 receptor, and PAC1 receptors are the key
parts of lactacystin-induced apoptosis process. Meanwhile, the
study further discussed the involved molecular mechanisms of
the protective effect of PACAP1-27. It is known that
mitochondria-mediated pathway is accounted for the most
important position in apoptosis [17-19].

There are soluble proteins in the mitochondria, such as
cytochrome C. Once triggered, a large number of neurotoxic
factors can cause increased permeability of the mitochondrial

outer membrane [20], bcl-2 protein family are important
effectors of the mitochondrial outer membrane permeability
[21], capable of forming lipid pore enough for cytochrome C to
transverse and release into the cytoplasm, resulting in
caspase-3 activation and apoptosis [22,23]. Intracellular ratio
of bcl-2 and bax regulates the happen of apoptosis. This study
confirmed that expression of bcl-2 decreased after treatment of
lactacystin, bax expression levels did not change, bcl-2/bax
ratio decreased. We can speculate lactacystin make
mitochondrial permeability transition pore opening and
mitochondria releasing cytochrome C by inhibiting the
expression of bcl-2, reducing bcl-2/bax ratio, inducing bax
activation and shifting to the mitochondria, which may further
trigger caspases cascade reaction leading to apoptosis. PACAP
could reverse the toxic effect of lactacystin, as demonstrated in
the results. These findings indicated that PACAP played a
protective role by regulating the mitochondrial related signal
pathway.

Except for the classic death receptor pathway and
mitochondrial pathway, the endoplasmic reticulum apoptosis
signaling pathway has also attracted wide attention [24,25].
Caspase-12 is a specific marker of activated endoplasmic
reticulum stress inducing apoptosis [26]. Caspase-12 is present
in cytoplasmic side of the endoplasmic reticulum membrane
with the form of zymogen, and is specifically activated in a
state of endoplasmic reticulum stress. Once caspase-12 is
activated, it acts on downstream effector caspases, inducing
apoptosis [27,28]. This study shows the expression of
activating caspase-12 protein significantly increased 24 h after
lactacystin treatment, and was paralleled with the change of
apoptosis rate, suggesting that lactacystin also can induce
endoplasmic reticulum stress, and then inducing apoptosis.
Thus, lactacystin can induce apoptosis in experimental
Parkinson's disease cell model through induction of
mitochondrial damage by the activation of caspase-3, bcl-2
etc., and also can induce apoptosis through the induction of
endoplasmic reticulum stress by activation of caspase-12.

Conclusion
Our research for the first time shows that PACAP1-27 can
effectively inhibit lactacystin-induced casapase-3 and
caspase-12 increases, and PACAP6-27 can antagonize this
effect, suggesting that PACAP1-27 plays a protective role by
regulating the mitochondrial and endoplasmic reticulum related
dual signal pathway. Further studies are required to explore
more detailed mechanisms of the observed effects.
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