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Abstract

The corn gluten meal, byproduct through the corn starch industry, was hydrolyzed with the
combination of alkaline protease and papain to produce oligopeptides with high Fisher-values. Response
surface methodology was applied to optimize the hydrolysis conditions, including reaction temperature,
pH, enzyme to substrate ratio, and percentage papain added. The highest degree of hydrolysis (29.51%)
was obtained at a reaction temperature of 55˚C, a reaction pH at 11.10, an enzyme to substrate ratio of
0.85, and percentage of papain added at 20%, which was in agreement with the predicted value
(30.84%) estimated by response surface methodology within a 95% confidence interval. In addition, the
final product was the mixture of oligopeptides with relatively high content of branched-chain amino
acids and in vivo the effect on physical fatigue was investigated by using a loaded swimming test, along
with the determination of blood lactic acid, blood urea nitrogen, liver glycogen and muscle glycogen
contents. The data showed that the oligopeptides could extend exhaustive swimming times of mice, as
well as increase liver and muscle glycogen contents and decrease blood lactic acid contents. These results
support that the oligopeptides, prepared from corn proteins using the combination of two proteases,
have an anti-physical fatigue effect.

Keywords: Corn gluten meal, Alkaline protease, Papain, Response surface methodology, Branched-chain amino acid,
Anti-fatigue.

Introduction
Physical fatigue can be described as an inability to translate the
motor drive into an expected force due to intense muscle
activity [1]. It is a complex physiological and biochemical
process, which acts as a protective mechanism for the human
body in response to life threatening over-exhaustion. However,
at present fatigue has been becoming a common social problem
among people who live under enormous stressful life and has
brought about much negative impact on physical function
[2-4]. Accordingly, the rising incidence of disease related to
physical fatigue continues to challenge scientists in addressing
various agents, including food source and non-food source,
towards the development of anti-fatigue product [5-8].

Corn Gluten Meal (CGM), a byproduct of the corn starch
industry, contains 60% protein and thus is a very economic
protein source. However, because of its special taste, low water
solubility and shortage of some essential amino acids, CGM is
used mainly for animal feed [9,10]. In spite of this, based on its

biochemical structure, low price and high abundance, trials for
improving the bioavailability of CGM have been conducted in
order to expand its applications. Among them, the most widely
studied is the preparation of functional oligopeptides or free
amino acids through enzymatic hydrolysis. The hydrolysates
prepared from CGM have exhibited various profitable effects,
such as radical scavenging activity and lipid peroxidation
inhibitory effects [9,11-13], anti-fibrotic activity [14], and
protective effects on alcohol-induced liver damage with
chronic alcohol consumption [15]. As it has been known that
there is a close relationship between the structures or
characteristic amino acid compositions of peptides and their
biological functionalities. Some special amino acids, such as
Branched-Chain Amino Acids (BCAAs), have been getting
special attention owing to their possible role in energy
metabolism and the longevity of species ranging from
unicellular organisms to mammals [16]. Sami demonstrated
that CGM has a relatively higher level of BCAAs and a lower
level of Aromatic Amino Acids (AAAs) than wheat gluten
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meal [17], thus the oligopeptides with high Fischer index (a
molar ratio of BCAA and AAA) might be expected to be
obtained from the hydrolysates of CGM. Furthermore, there is
limited information on the anti-fatigue activity of the
oligopeptides with high Fisher index prepared from the corn
protein.

Alkaline proteinase, papain, and neutral proteinase are the
commonly applied proteases to prepare the low weight
peptides from CGM, and stepwise hydrolysis by two enzymes
is often necessary to obtain the hydrolysates with a high degree
of protein hydrolysis [18]. The fractional hydrolysis with two
enzymes has the advantage of providing the optimum
enzymatic condition by controlling enzymatic hydrolysis
condition suitable for each enzyme, respectively. However, the
relevant steps are relatively more complicated and would spend
longer time compared with one step enzymatic hydrolysis
containing two enzymes. Hence, the present work investigated
the feasibility and the optimal conditions of applying the
compounding enzymes containing alkaline protease and papain
to hydrolyse the CGM for the preparation of Oligopeptides
(CPs) with high Fisher-values, and in vivo anti-fatigue activity
of the CPs was also examined through the loaded swimming
exercise of mice.

Materials and Methods

CGM and enzymes
The corn proteins were obtained from corn gluten meal
provider LuZhou Co. (Shandong, China). The crude protein
content was 80.15%, as determined by the Kjeldahl method.

Alkaline protease (EC 3.4.21.14) and papain (EC 3.4.22.2)
used for the hydrolysis of CGM were provided by Sigma Int.

Preparation of hydrolysis and degree of hydrolysis
All hydrolysis reactions were performed in 250 ml Erlenmeyer
flasks, containing 3 g of CGM samples with Glycine-NaOH
buffer (50 ml). Reactions were carried out in triplicate in a
thermostatically controlled water bath, a pH electrode, and a
mixer shaft for addition of alkali. Enzymes were added and
temperature was controlled during the hydrolysis reaction and
pH was monitored by the pH stat method using automatic
Mettler DL 25 titration unit [19]. Hydrolysis was continued
with alkaline protease or/and papain for 120 min, after which
the reaction was stopped by heating to 90°C for 5 min.
Samples were cooled and then centrifuged at 16000 g for 10
min at 4°C. The supernatants were collected and used for
further absorption experiments.

The Degree of Hydrolysis (DH) is defined as the ratio
(expressed as (%)) between the number of hydrolyzed peptide
bonds over the total number of bonds available for hydrolysis
which was measured by the pH-stat method. DH was
calculated from the following Equation 1.��% = �����ℎ���   × 100% (1)

B-consumption of NaOH for hydrolysis (ml); Nb-the
concentration of NaOH; α-average degree of dissociation of
the α-NH groups (CGM is 1.01); M-total mass of protein (g) in
the reaction mixture; htot-total number of peptide bonds in the
test protein substrate (CGM is 9.2 mol/g).

Experimental design
To optimize hydrolysis conditions, the DH was considered as
the response variable and four reaction parameters were
optimized using Response Surface Methodology (RSM). The
One-Factor-At-a-Time method (OFAT) experiments were
conducted first to choose the most critical factors and their
reasonable ranges (fixed level of four factors were E/S
ratio=0.6, time at 2 h, pH=10 and temperature=50˚C). The
range and center point values of the four independent variables
presented in Table 1 were based on the results of preliminary
experiments. The Reaction temperature (X1), pH (X2), Enzyme/
substrate ratio (w/w) (X3) and the percentage (mass) of papain
added (X4) were chosen for independent variables, and the
results of the effect of each variable on the response were
presented in Table 2. The RSM was comprised of 29
treatments including 24 factorial points, eight axial points
(α=1.41) and five replicates at the center points. Experimental
runs were randomized to minimize the effects of unexpected
variability in the observed responses. DH is used as the
response for the combination of the independent variables as
shown in Table 2. The effect of each independent variable was
eventually examined on the surface of this response. The
model proposed for the response is presented in Equation 2.

Table 1. Factors and levels in the RSM experimental design.

Variable Code Code level

-1 0 1

Temperature (˚C) X1 50 55 60

pH X2 10.5 11.0 11.5

E/S X3 0.6 0.8 1.0

Percentage papain added (%) X4 15 25 35

Table 2. Experimental design in RSM studies by using four
independent variables showing observed DH.

No. Coded levels of variable DH (%)

X1 X2 X3 X4 Y

1 0 1 -1 0 27.44

2 1 0 -1 0 28.52

3 0 -1 0 1 28.34

4 1 1 0 0 27.47

5 -1 0 0 -1 27.65

6 0 0 0 0 32.34

7 0 0 0 0 31.44
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8 -1 1 0 0 29.26

9 -1 0 1 0 26.23

10 0 0 0 0 31.42

11 0 0 0 0 29.26

12 0 -1 0 -1 28.7

13 -1 -1 0 0 26.39

14 0 0 1 -1 26.1

15 1 0 1 0 26.9

16 0 1 0 1 27.98

17 0 0 -1 -1 27.44

18 1 0 0 1 29.26

19 1 -1 0 0 28.34

20 0 0 -1 -1 30.13

21 0 0 0 0 29.26

22 -1 0 0 1 28.19

23 0 -1 -1 0 27.98

24 -1 0 -1 0 26.9

25 0 1 1 0 29.06

26 0 0 1 1 28.79

27 1 0 0 -1 30.13

28 0 -1 1 0 29.33

29 0 1 0 -1 29.42

� = �0+∑� = 1
4 ����+∑� = 1

4 �����2+∑� = 1
3 ∑� − �+ 1

4 �������+ �� (2)
Where y is the response variable or the degree of hydrolysis; b0
is constant; bi represents the regression coefficient for linear
effect; bii represents the quadratic coefficient; bij is the
interaction coefficient and ei is the random error [20].

Preparation of corn oligopeptides (CPs) with high
Fischer ratio
Corn gluten meal was crushed and sieved using an 80 mesh
sieve. The permeate was collected and dispersed in the
corresponding buffer to obtain a 60 g/L protein slurry, then the
mixture was hydrolyzed under the specified conditions for 2 h
under continuous stirring. At the end of the hydrolysis period
the mixture was heated to 90˚C for 10 min to inactivate the
protease. After the hydrolysate cooled down to the room
temperature, 1 M hydrochloric acid was used to adjust the pH
to 2.0. Then, 60 mesh activated charcoals were added at the
amount of 12% (W/V) at room temperature for 3 h under

continuous stirring, for it has a higher absorption capacity to
the AAA than to the BCAA (data not shown) (Yantai, China).
After centrifuged at 1000 Xg for 10 min and concentrated by
rotary evaporation, the solution was then fractionated using
ultrafiltration with Molecular Weight Cut-Off (MWCO)
membranes of 3 kDa (Pall, America). The permeate was
obtained and desalinated by adding ion exchange resin at the
amount of 10% (W/V) for 2 h under continuous mixing, then
the solution was lyophilized and stored at -20˚C for the
following research.

Treatment of animals
Kunming mice (8 weeks old, males, SPF, 18-22 g body weight)
were purchased from the Shandong Laboratory Animal Center
(Jinan, China), and housed in stainless steel wire-bottomed
cages with free access to water and feed at 22 ± 2˚C with a 12
h/12 h light/dark. All animals were cared humanely, and the
studies reported here have been carried out in accordance with
the principles for the Humane Treatment of Animals set by the
Association of Laboratory Animal Sciences at College of
Biological Science and Technology, Jinan University.

Animals grouping and treatment
40 male mice were randomly divided into 4 groups with 10 in
each group. All were administered orally and daily for 30 days.
Group Control received isotonic saline solution as control;
Group Low, Med and High obtained 0.1, 0.3 and 0.5 mg/kg
body weight of CPs solutions, respectively. The mice were
made to swim for 15 min three times a week to accustom them
to swimming. The exhaustive swimming exercise was
conducted after 1 h of the last gavage on day 30. The mice
were submitted to a forced swimming test to determine the
effect of CPs on physical fatigue.

Forced swimming test
Physical fatigue was induced by forcing animals to swim until
exhaustion. The mice were placed in a tank with 30 cm deep
water in it. Water temperature was maintained at 25 ± 1˚C. The
mice were loaded with a steel washer weighing approximately
5% of their body weight attached to the tails. The mice swam
until exhaustion, which is defined as the moment when the
mouse was not able to maintain its nose out of water for more
than 10 s [7], and the swimming time was recorded.

Biochemical parameters assay
After the forced swimming test, the mice were allowed to rest
for 1 h. They were then taken out and the blood was collected
through eyeballs to prepare the serum for use, while the liver
and gastrocnemius muscle were collected to be made into 10%
homogenates with normal saline at 4°C as soon as possible.
The Blood Lactic Acid (BLA), Blood Urea Nitrogen (BUN),
and liver glycogen and muscle glycogen were examined
according to the kit instructions (Jiancheng Bio., Nanjing,
China).

Preparation of the oligopeptides and investigation of their anti-fatigue activity
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Statistical analysis
The data are expressed as means ± S.D. Statistical comparisons
were compared by one-way Analysis of Variance (ANOVA).
The results were considered statistically significant if the p
values were 0.05 or less.

Results

Hydrolysis by alcalase or papain under different pH
and temperature conditions
In order to investigate the feasibility of the compounding of
alkaline protease and papain hydrolyzing proteins in one-step,
the effect of the factors, pH and temperature, on hydrolysis by
the two enzymes were examined, respectively. Usually, the
extent of protein degradation by proteolytic enzymes was
estimated by assessing the Degree of Hydrolysis (DH).
Alkaline protease showed higher DH than papain under all
temperature ranges and pH ranges except that at pH 6.0 (Figure
1). In addition, the DH of the two enzymes had similar
tendencies when temperature ranged from 40˚C to 65˚C, and
they both reached their respective optimums at 55˚C. However,
in terms of pH, they reached their respective optimums at
different pHs, with the alcalase at basic pH and papain at
neutral pH. However, it is notable that the DH of CGM by
papain retained about 90.9%, 85.9%, 76.9%, and 55.5% at pH
8.0, 9.0, 10.0, and 11.0 compared to that at optimum pH 7.0,
showing a wide range of reaction pH values. Considering
alkaline protease played major role in protein hydrolysis, it was
feasible to apply the two enzymes in one-step. Hence pH 10.0
and 55˚C were chosen as center points with 0.5 and 5˚C as step
changes, respectively.

Figure 1. Effect of pH (a) and temperature (b) on the DH. (a) at
50˚C; (b) at their respective optimal pH: Alcalase pH 11.0, Papain
pH 7.0.

Effect of other factors on hydrolysis through one-
factor experimental design
As the alcalase played a leading role in the hydrolysis, the
mass percentage of papain was examined ranging from 0 to
45% (Figure 2a). The DH of CGM increased as the papain was
added at increased amount, and reached the highest level of at
25 percent, which was 16% higher than with alcalase alone.
Thus, the increased DH implied a cooperative effect on
hydrolyzing protein between the two enzymes at one-step.
Besides, the enzyme-substrate ratio (E/S, w/w) was examined,
where the enzyme referred to the total mass of the two
enzymes. As expected, the increase of E/S ratio resulted in an
increase in DH of CGM due to greater hydrolysis of the protein

(Figure 2b). Taking into account the DH achieved and the cost,
the center point for E/S was 0.8 with a step change of 0.2
(Table 1). Hence, the center point for the percentage of the
papain was 25% with a step change of 10% (Table 1).

Figure 2. Effect of percentage of papain added (a) and E/S (b) on the
DH. (a) E/S ratio was 1.0; (b) the percentage of papain added was
25%.

Response surface method optimization
RSM was used to optimize the hydrolysis conditions for the
preparation of the CPs from CGM. The influence of pH,
temperature, E/S ratio and the percentage of added papain on
the DH were shown in Table 2. Analysis of Variance (ANOVA)
was presented in Table 3. As shown in Table 3, the value of p
of the model was less than 0.05, indicating that the model was
significantly predictive at the 0.05 significance level. The lack
of fit analysis was used to test the fitness of the model. The p-
value of the lack of fit was 0.8075, which demonstrated that
the lack of fit was not significant as compared to the pure error
(p>0.05) which further validates the model. Thus, the model
was able to fit the experimental data, and could be used to
monitor the optimization. The following empirical regression
Equation 3 represents the DH (y) on pH, temperature, E/S
ratio, and the percentage of papain added.

The model had an acceptable coefficient of determination
(R2=0.8524), which indicated that 85% of the variability in the
response on DH can be explained by the independent
parameters. The term “Predicted R-Squared” agreed well with
the “Adjusted R-squared” (data not shown). These results
indicated that the models were well adapted to the responses.

Table 3. Statistical analysis for the response surface quadratic model
obtained from RSM design.

Source Sum of
squares

DF Mean square F value p

Model 47.92 14 3.42 2.60 0.0424*

X1 3.00 1 3.00 2.28 0.1536

X2 0.2 1 0.20 0.15 0.7026

X3 0.33 1 0.33 0.25 0.6228

X4 0.38 1 0.38 0.29 0.6006

X12 17.27 1 17.27 13.10 0.0028**

X22 7.47 1 7.47 5.67 0.0321*

X32 18.40 1 18.40 13.96 0.0022**
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X42 3.85 1 3.85 2.92 0.1095

X1 X2 3.50 1 3.5 2.65 0.1256

X1 X3 0.23 1 0.23 0.17 0.6853

X1 X4 0.50 1 0.50 0.38 0.5490

X2 X3 0.018 1 0.018 0.019 0.9081

X2 X4 0.29 1 0.29 0.22 0.6453

X3 X4 7.24 1 7.24 5.49 0.0344*

Statistical analysis

Residual 18.45 14 1.32

Lack of fit 10.56 10 1.06 0.53 0.8075

Pure error 7.89 4 1.97

Cor total 66.37 28

y=27.94+0.83 X1-0.037 X2-0.17 X3-0.34 X4-1.23 X12+0.077
X22+0.22 X32+0.38 X42-1.44 X1 X2-0.24 X1 X3-0.85 X1
X4+0.067 X2 X3-0.27 X2 X4+1.34 X3 X4 → (3)

Where y, X1, X2, X3, X4 were the DH, pH, temperature, E/S
ratio and the percentage papain added, respectively.

Effects of parameters
In order to determine the optimal levels of each variable for
maximum DH, 3D response surface plots were constructed by
plotting the DH on the Z-axis against any two independent
variables, while maintaining other variables at their optimal
levels (Figure 3). The DH increased until pH, temperature, E/S
ratio and the percentage of papain added reached an optimum
point and then declined following further increasing of the
above variables’. This demonstrated that those variables could
affect the enzyme hydrolysis activity, and there should be an
optimal value of DH in the range. A relative alkaline pH and
high E/S were desirable to promote the DH and the fluctuation
around the center point in temperature and the percentage of
papain added did not result in improved DH. Factorial effects
with values of p less than 0.05 were considered to be
significant. It was surprising that not a single factor exerted a
significant linear effect of DH within a 95% confidence
interval, while the quadratic effects of three factors, including
pH (X1) (p<0.01), temperature (X2) (p<0.05), and the E/S ratio
(X3) (p<0.01), were significant (Table 3). In addition, the
interaction effect between E/S ratio and the percentage of
papain added (X3 X4) were significant (p<0.05). Hence, in our
study, the four variables exhibited complicated effects on the
hydrolysis reaction.

Optimization and model validation
The optimal conditions were extracted by Minitab 14 software.
The highest DH obtained by using the above optimized
concentrations of the variations was pH at 11.10, temperature
at 55˚C, E/S ratio at 0.85, and percentage of papain added at
20%. On this condition, the predicted DH was 30.84%. To
confirm the validity of the model, hydrolysis of CGM was

performed under the optimal conditions, and the DH reached
29.51 ± 2.49%. The experimental DH value agreed with value
predicted by the model within a 95% confidence interval, and
it was about 20% higher than the value obtained through
OFAT. This confirmed that the model was powerful and
suitable for the estimation of experimental values.

Besides, the DH of one-step hydrolysis was examined every
twenty minutes in three hours, and the step-by-step hydrolysis
was also conducted using the alkaline protease for two hours
and then papain for another two hours under their optimum
conditions, respectively (Figure 4). The DH of CGM by one-
step hydrolysis increased rapidly during the first two hours,
and then DH level remained at about 29%; while the step-by-
step hydrolysis reached a higher DH at 30% compared to the
one-step after hydrolysing for four hours. Given the fact that
similar DH level can be reached with much less effort and
time, one-step hydrolysis clearly has advantage over the
traditional step-by-step approach in terms of efficiency.

Figure 3. Response surface plots depicting the effects of independent
variables on DH: (a) E/S and the percentage of papain added (Pa);
(b) Temperature (T) and Pa; (c) pH and E/S; (d) pH and Pa; (e) pH
and T; (f) T and E/S.

Figure 4. DH during hydrolysis at one-step or two-step. () one-step;
() step-by-step.

Effects on the exhaustive swimming
Loaded swimming exercise of mice was selected for evaluation
of the CPs prepared from the CGM on anti-fatigue activity.
The length of the exhaustive swimming time, BLA and BUN
content in blood, and liver glycogen and muscle glycogen
contents of mice were examined to indicate the degree of
fatigue or the state related to fatigue. As shown in Table 4, the
exhaustive swimming times of the Low, Med, and High groups

Preparation of the oligopeptides and investigation of their anti-fatigue activity
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were longer than that of the control group (p<0.05), and
increased by 27.69%, 106.16%, and 138.47%, respectively.
The liver glycogen and muscle glycogen contents of mice in
the Med and High groups were significantly increased
compared with that in the control group (p<0.05) (Table 4).
The contents of glycogen in the liver and muscle in the Low
group were also raised by 10.01% and 35.77%, respectively,
though no significant difference was observed (p>0.05) (Table

4). The effects of the CPs on BLA and BUN of mice after
swimming were also depicted (Table 4). Though the BLA was
decreased in all three experiment groups compared with that in
the control group, only the BLA in High groups exhibited
significant difference (p<0.05) (Table 4). The BUN contents of
mice in all the experimental groups were higher than that in the
control, though only that in High group had a significant
difference compared with that in the control group (p<0.05).

Table 4. Comparisons of swimming time, liver glycogen, muscle glycogen, contents of BLA and BUN (n=10).

Group Swimming time (min) Liver glycogen (mg/g) Muscle glycogen (mg/g) BUN (mmol/L) BLA (mmol/L)

Control 43.33 ± 6.73 6.99 ± 1.33 0.99 ± 0.11 29.44 ± 6.16 13.54 ± 0.93

Low 55.33 ± 4.50* 7.69 ± 1.92 1.61 ± 0.50 29.28 ± 0.21 13.37 ± 0.49

Med 89.33 ± 5.25* 9.49 ± 3.70* 2.16 ± 1.19* 31.67 ± 6.00 12.19 ± 0.23

High 103.33 ± 9.50* 14.08 ± 7.182* 2.76 ± 1.53* 38.37 ± 1.22* 11.45 ± 1.76*

*p<0.05, vs. control group

Discussion
To obtain the high hydrolysis degree of the CGM as soon as
possible in proper conditions, the feasibility of alkaline
protease and papain under the uniform condition was
investigated. Alkaline protease (E.C. 3.4.21.14) from Bacillus
sp. is characterized by its optimum activity and stability under
alkaline condition. Acting as an endopeptidase, they are known
to be specific against aromatic or hydrophobic amino acid
residues such as phenylalanine, tyrosine, or leucine at the
carboxyl side of the splitting point [21]. While papain (E.C.
3.4.22.2), still an endopeptidase, is characterized by a
remarkable preference for hydrophobic amino acids at the P2
site of the scissile peptide bonds [22]. If some favourable
conditions were met, the two proteases might work together
and provide synergistic effects on the proteolysis of CGM. In
our study, though the papain’s optimum of pH is about 7.0, the
DH of CGM by papain around pH 11.0 still retained above half
peak values. As the optimum pH of papain is known to be
neutral, at pH 6.5 to 7.0, there is little information about the
digestion of protein by papain under alkaline condition.
However, it is well known that the rate of digestion at a certain
pH also varies with the different substrates, that is, the amino
acids of the peptide and their arrangement in the chain.
Lineweaver and Schmimmer found that the activity of papain
at pH 9.0 was about 60 percent of that at pH 6.5 to 7.0 [23].
Hoover investigated the effect of pH on the course of
proteolysis by papain using three synthetic substrates,
Benzoylargininamide (BAA), Carbobenzoxy-l (+)-
Isoglutamine (CBIG), and Hippurylamide (HA) [24]. The
result exhibited that the optimum pH for the BAA is 0.5 units
higher than those for the other two substrates, and HA, the
least readily digestible substrate, had a slightly broader curve
than the others. In our study, the degree of hydrolysis of CGM
by papain was 9.21% even at its optimum pH 7.0, a quite lower
level compared with that of about 17% of lotus seed protein in
optimal conditions [25]. It is uncertain whether the wide range
of pH for the proteolysis of CGM was related to the low

digestible substrate of CGM. Anyway, it provided an
opportunity for the combined use of the two proteases under
alkaline condition.

It is well documented that a divalent cation is required by
alkaline protease not only for its maximum activity, but also
for the increase of its thermal stability [26]. So the effect of
metal ions, including Mg2+, Mn2+, Ca2+, Cu2+, K+, and Zn2+,
on the DH of alkaline protease along was studied at the
concentrations ranging from 2 mmol to 10 mmol. However, in
this study, there was no significant enhancement of DH when
applying each kind of metal ion at different concentrations
compared to the blank control (p>0.05), though
supplementation with 4 mmol Mn2+ showed a slight increase
on DH by 7% (p>0.05) (Data not shown). A severe inhibition
of DH by Cu2+ (≥4 mmol) was observed in the hydrolysis
system (p<0.05). The effect of cations on alkaline proteases
varied with different proteinases derived from different
microorganism [27], and that might yet be interrelated with
different substrates.

Experiments were carried out to obtain the optimal enzymatic
hydrolysis condition. Based on the OFAT, three different levels
for per factor were chosen respectively in the following study.
The purpose of the ANOVA was to investigate whether the
model proved effective and which parameter significantly
affected the response [28]. Usually, the small p-value indicated
that the model or the factor made a significant effect. The
results of ANOVA for DH showed that the model was accepted
as significant at the level of 0.05 confidence level. While none
of the four factors was linearly significant at a significance
level of 0.05, and the quadratic effects of three factors,
including pH, temperature, and the E/S ratio were accepted as
significant at the level of 0.05. The result was unusual, for in
the majority of studies there were usually some of the
parameters making significant effects on the response
[9,20,29]. This might be related partly to the DH of CGM
hydrolyzed by complex alkalase-papain system, in which the
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factors might influence the two proteases in different ways,
thus making them become more complicated to the response.

After the hydrolysis period, the hydrolysate was mixed up with
activated charcoals for the absorption of AAAs (data not
shown), and then it was fractioned using ultrafiltration to
obtain the fraction of oligopeptides with mass molecules under
3 KDa. The permeate turned out to have a molecular weight
distribution ranging from 109 Da to 624 Da by separation of
Sephadex G-15, with a relatively rich content of BCAAs (a
molar percent of 24.3 to total amino acids), and a relatively
low content of AAAs (a molar percent of 1.1 to total amino
acids) (unpublished data). Having the molar ratio of BCAAs/
AAAs to 21.92, the mixture obtained can be considered the
CPs with high Fischer’s ratio (defined as the ratio higher than
20.0) [30]. As the mixture of BCAAs supplementation has
been demonstrated to enhance glycogen reserves in trained rats
either in rested state [31] or in moderate exercise [32] and
enhance mitochondrial biogenesis, we further investigated the
anti-fatigue activities of the CPs prepared from CGM.

Loaded swimming exercise of mice was used to evaluate the
anti-fatigue activity of the CPs [33]. In our study, the data
showed that the CPs significantly prolonged exhaustive
swimming time of mice in the Med or High groups compared
to that in the control (p<0.05), which suggested that the CPs
with a high content of BCAAs had anti-fatigue activity. This
agrees with the result of human test, when healthy individuals
supplemented with mixture of BCAAs (300 mg/kg/d) for 3d
demonstrated a greater resistance to fatigue and higher plasma
glucose during an exhaustive exercise test [34]. However,
Campos-Ferraz argued that Leucine (Leu) alone could prevent
impaired endurance exercise performance compared with the
mixture of BCAAs [35]. In addition, other studies indicated
that supplementation of some amino acids, esp. Leu, preserves
liver glycogen, which is fundamental to glucose homeostasis
and thus resistance to exhaustion [36-38]. It was worth noting
that the content of Leu was relatively high in the CPs prepared
from the CGM, accounting for 14.7% of the total amino acids
(data not shown), thus the CPs with relatively high contents of
either BCAAs or Leu might act as agents for anti-fatigue. The
potential mechanism was described as increased serum Leu
could inhibit Branched-Chain Keto acids Dehydrogenase
complex (BCKD) and hence stimulate BCKD
dephosphorylation (activation), increasing the oxidation of
other essential amino acids, such as isoleucine and valine,
which contributed indirectly to muscle and liver glycogen
sparing [35]. As the glycogen is the important resource of
energy during exercise, the increase in glycogen stored in liver
or muscle will improve the body’s physical endurance [39].
That was in accordance with our result that the CPs
significantly increased muscle and liver glycogen contents of
mice after exhaustive swimming. Besides, increased Leu
implied in a lower pyruvate dehydrogenase activity in muscle
and an augmented concentration of alanine, which goes to the
bloodstream and reaches the liver, making it possible to
generate more glucose through the glucose-alanine cycle [35].
Therefore supplementation with Leu could result in an
increased glycogen store as well as stronger amino acid

metabolism. That is consistent with our data that the BUN
contents of mice in the experiment groups rose along with the
increasing dosage of the CPs compared to that in the control
group. BUN, the metabolic outcome of protein and amino acid,
acts as another index to evaluate the bearing capability when
the body suffers from a physical load. Usually, there is a
negative correlation between the urea nitrogen in vivo and the
exercise tolerance, because protein and amino acids have a
stronger ketabolic metabolism when the body is unable to
obtain enough energy by sugar and fat catabolic metabolism
[40]. But in our study, the enhanced BUN content of mice in
the experiment groups may be due to the activity of the Leu
and/or the additional supplement of the CPs. Therefore, BUN
might not be a proper index for the physical fatigue when the
supplementation is involved in the proteins, oligopeptides, or
amino acids. BLA is also an important biochemical parameter
related to fatigue. As glycolysis is the main energy source for
intense exercise in a short time, BLA, the glycolysis product of
carbohydrate under an anaerobic condition, could act as an
important indicator for judging the degree of fatigue [41]. Our
results consistently showed that the CPs could inhibit the
increase of BLA of mice after swimming, which suggested that
the CPs could postpone the appearance of fatigue.

Conclusion
In conclusion, our results indicated that CGM could be
effectively hydrolyzed using the combined papain and alkaline
protease to obtain the high Fisher-value CPs with an anti-
fatigue activity. RSM was an efficient statistical tool in the
optimization of the hydrolysis conditions. The highest DH was
29.51%, at a reaction temperature of 55˚C, a reaction pH at
11.10, an E/S ratio of 0.85, and the percentage of papain added
at 20%. The experimental value agreed with the predicted
value within a 95% confidence interval, suggesting a good fit
between the models and the experimental data. The CPs
prepared from the hydrolysates could be characterized by high
Fisher-values, rich in BCAAs and Leu, and exhibited an
effective anti-fatigue effect. The data showed that the CPs
could prolong the exhaustive swimming time of mice, as well
as increase liver and muscle glycogen contents and decrease
BLA contents. The results supported that the CPs had an anti-
physical fatigue effect. Future study could be directed towards
the purification and generation of bioactive peptide sequences
to better understand the mechanism involved in the action of
the CPs on physical fatigue.
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