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Abstract

Combining image segmentation based on the statistical classification with geometric prior information is
supposed to increase robustness and reproducibility. A probability density function is initialized and a
spatial constraint is defined which prevent segmentation that is not a part of the model. The goal of this
work is a high quality image segmentation of healthy tissue and a precise delineation of tumor
boundaries from multiple slices of MRI data. In this paper, algorithms like K-means, Watershed and
Expectation Maximization algorithms are used for the investigation and the results of all the
segmentations are compared. Based on the results, a common consensus on the robustness of each
method is discussed. The Watershed segmentation and the Atlas are combined through markers and this
has been applied in the Gray/White matter segmentation in MR images. A previous probability criterion
is to be used for its calculation. These methods act as an aid in the early detection of many neurological
disorders like Brain tumor, Paralysis, Alzheimer’s disease, etc. They also handle types of pathology,
space occupying mass tumors, and infiltrating changes like edema aiding as a new technique for clinical
routine for use in planning and monitoring in neurosurgery, radiology and radio-oncology. These
methods can be enhanced to delineate tumor from surrounding tissues like edema aiding in image
guided surgery. Both the off-line data and live patient data are used for the analysis. Testing of different
algorithms for their robustness in segmenting the brain images are carried out using the image
processing tool (IPT) of MATLAB.
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Introduction
Medical Image Segmentation has become an important
diagnostic tool in the practice of modern medicine.
Segmentation of MRI Brain images is the delineation of neuro-
anatomical structures as well as brain abnormalities. The study
of many brain disorders involves the accurate segmentation of
Magnetic Resonance (MR) images of the brain. Such studies
typically involve large amount of data and manual tracing by a
human expert which is time-consuming. In addition, human
experts show significant intra- and inter-observer variability,
which complicates the analysis of the resulting image
segmentations. Hence, there is a need for automated methods
that produce fast, reliable and reproducible segmentations.

There are mainly three main goals on segmentation of human
brain images:

• Brain volume extraction
• Brain tissue segmentation
• Specific brain structure delineation

Problem definition
The problem addressed here is the automatic post-acquisition
segmentation of brain tumors and associated edema in multi-
spectral Magnetic Resonance (MR) images. The input is a
series of slices taken from different MR modalities and the
output will be a binary segmentation of the images, where each
pixel in the input image is labeled as either normal or
abnormal. This work specifically addresses the more
challenging tasks of segmenting namely the Gross Tumor
Volume (GTV) and the Full Tumor Area (FTA). The desired
output is defined manually by human experts based on the
visible abnormality in the image data, which is limited by the
imaging protocol, used and is subjected to interpretation. In
order for the algorithm to be practically useful for segmenting
existing data, two major constraints are required. The first
major constraint is that the processing will be a post-
acquisition. Specifically, only the image data will be used in
order to produce the final result. The second major constraint is
that the system must be able to utilize common MR modalities
(such as T1-weighted and T2-weighted images).
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Magnetic resonance imaging and brain tumors
Magnetic Resonance Imaging (MRI) is a powerful
visualization technique that allows images of internal anatomy
to be acquired in a safe and non-invasive way. It is based on
the principles of Nuclear Magnetic Resonance (NMR), and
allows a vast array of different types of visualizations to be
performed. This imaging medium has been of particular
relevance for producing images of the brain, due to the ability
of MRI to record signals that can distinguish between different
‘soft’ tissues (such as gray matter and white matter). In
imaging the brain, two of the most commonly used MRI
visualizations are T1-weighted and T2-weighted images. These
weightings refer to the dominant signal (whether it be the T1
time or the T2 time) measured to produce the contrast observed
in the image. In visualizing brain tumors, a second T1-
weighted image is often acquired after the injection of a
‘contrast agent’. These ‘contrast agent’ compounds usually
contain an element whose composition causes a decrease in the
T1 time of nearby tissue (gadolinium is one example). This
result in bright regions observed at image locations that contain
‘leaky’ blood cells (where blood moves through the brain-
blood barrier). The presence of this type of ‘enhancing’ area
can indicate the presence of a tumor.

Goal
The goals of this work are organized as

• To compare the performance analysis of segmentation
techniques for the MR images of the human brain such as
Expectation Maximization (EM), k-means clustering, and
Watersheds. There is no single algorithm that can be
universally used to solve all problems. So the goal is to
search for the best algorithms that can be used to segment
medical images.

• To validate all these segmentation algorithms with live
patient data and check for the robustness of the algorithms
based on the exact quantum of tumor present in the subject
information and the time complexity involved to carry out
the segmentation task.

Assumptions
As one would expect, making certain assumptions and using
prior knowledge can help greatly in the problem of segmenting
brain tumors. It is assumed that tumors are ring-enhancing or
fully enhancing with contrast agent. Intravenous MRI contrast
agents, specifically the gadolinium chelates having high safety
and lack of nephrotoxicity compared with X-ray contrast media
is used in obtaining the MR images. The major tumor classes
that fall in this category are meningiomas and malignant
gliomas.

MR sequences
It is assumed that all datasets analyzed include a T1 pre-
contrast image, a T1 post-contrast image (both with 1 × 1 × 1.5
mm3 voxel dimensions), and a T2 image (1 × 1 × 3 mm3 voxel
dimensions). This inter-slice spacing is the standard protocol at

the hospitals where the datasets were acquired. All the datasets
are acquired on Siemens 1.5T and 3T scanners. The Siemens
MRI enables to detect different pathology very early, as it may
be seen with CT scan. It also allows characterizing the type of
abnormality seen and visualizing the extent of problem better.

Segmentation Methods
Several automated technique have been developed for MRI
segmentation. Several automated segmentation techniques and
their performance are discussed below.

Thresholding
One of the simplest and oldest image segmentation techniques
is the thresholding process. It consists of separating pixels in
different classes depending on their gray levels. An intensity
value, called the threshold that separates the desired classes is
determined. Based on the threshold value, pixels are grouped
with intensity greater than the threshold into one class and
remain pixels grouping into another class. The demerit is that it
cannot be applied to multichannel images. In thresholding
technique, the image has only two values either black or white.
MR image contains 0 to 255 grey values. Hence, thresholding
of MR images ignores the tumor cells [1]. Hence this technique
is not considered for analysis.

Clustering techniques
Clustering means collection of objects which are similar
between them and are dissimilar objects belonging to other
clusters. Clustering is suitable in biomedical image
segmentation when the number of cluster is known for
particular clustering of human anatomy. There are two types of
Clustering algorithm i) Exclusive clustering ii) Overlapping
clustering

In exclusive clustering, one data (pixel) is belonging only one
cluster then it could not belong to another cluster. K-mean is
example of exclusive clustering algorithm. In overlapping
clustering, one data (pixel) is belonging two or more clusters.
Fuzzy C means is example of overlapping clustering algorithm
[2].

K-means clustering
The k-means algorithm is an algorithm to cluster objects based
on attributes into ‘k’ partitions. It assumes that the object
attributes form a vector space. The objective is to minimize the
total intra-cluster variance, or the squared error function, where
there are k clusters, Si, i=1, 2...k and μi is the centroid or mean
point of all the points.

The algorithm starts by partitioning the input points into ‘k’
initial sets, either at random or using some heuristic data. It
then calculates the mean point, or centroid, of each set. It
constructs a new partition by associating each point with the
closest centroid. Then the centroids are recalculated for the
new clusters, and algorithm repeated by alternate application of
these two steps until convergence, which is obtained when the
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points no longer switch clusters (or alternatively centroids are
no longer changed).

The algorithm has remained extremely popular because it
converges extremely quickly, in practice. In fact, many have
observed that the number of iterations is typically much less
than the number of points. Approximate k-means algorithms
have been designed that make use of core sets: small subsets of
the original data [1,3].

Algorithm
Step 1: Choose first K different feature vectors as K different
cluster centers c0(0), c1(0)… c k-1(0), where K is the number
of classes and the superscript denotes the iteration number.

Step 2: At r-th iteration for each of the feature vectors, assign
feature vector {fi} to cluster Ck if

d(fi, Ck-1
(r-1))=min{d(fi, cj

(r-1))}

for j=0, 1,…, K-1 where d is a distance measure, or Euclidean
distance.

Step 3: New cluster centers are computed by minimizing intra-
class distances. If ck(r) is the center of ck at r-th iteration, this
is calculated by minimizing�� = ∑�� ∈ �� 〚 ��− ��(�) 〛2
for k=0, 1, 2, … , K-1. The cluster center obtained by
minimizing Dk in the above equation is the mean value of
feature vectors belonging to Ck at r-th iteration, i.e.��(�) = 1��(�) ∑� ∈ ����
where nk(r) is the number of feature vectors assigned to ck at r-
th iteration

Step 4: If ck(r)=ck(r-1) for all k, that means there are
insignificant or no changes in cluster centers, then the
algorithm is terminated, else continue from Step 2.

Summary
K-means has invited a lot of attention for its simplicity and
speed which allows it to run on large datasets. In terms of
performance, the algorithm is not guaranteed to return a global
optimum. The quality of the final solution depends largely on
the initial set of clusters, and may, in practice, be much poorer
than the global optimum. Since the algorithm is extremely fast,
a common method is to run the algorithm several times and
return the best clustering found.

Another main drawback of the algorithm is that the number of
clusters (i.e. ‘k’) to find is to be specified in advance. If the
data is not naturally clustered, some strange results may be
expected. Also, the algorithm works well only when spherical
clusters are naturally available in data. Thus, the K-means
algorithm has the following disadvantages: (1) supervised
learning mode, (2) slow real-time ability, (3) instability.

Watershed
The concepts of watersheds and catchment basins for image
segmentation are borrowed from topography in which
watershed lines divide individual catchment basins. Image data
can be interpreted as a topographic surface with the gray levels
of its gradient image representing the altitudes. Homogeneous
regions correspond to catchment basins and region boundaries
correspond to high watersheds. The image segmentation
problem is hence reduced to find the watershed lines or
equivalently the catchment basins. There are two basic
approaches to watershed image segmentation: the top-down
approach and the bottom-up approach. Both start with
identifying local minima in the gradient image. A local
minimum is a connected region of pixels (could be only one)
with the same gray levels whose neighbors have higher
altitudes. In the top-down approach, each pixel of the image is
taken as a water drop and flow downstream to a local
minimum. A catchment basin is then defined as the set of
pixels that flow to the same local minimum [4].

While the downstream flow path is intuitive and easy to
determine in the continuous space, there exists no rule to set up
the path uniquely in digital surfaces. The bottom-up approach
is more suitable to practical implementation. Raw watershed
segmentation produces a severely over-segmented image with
much more catchment basins than expected. To overcome the
problem, various region-merging methods can be used. One
simple method of basin merging method is to use a water depth
threshold. The threshold is the maximum depth that the
topographical surface is immersed into the water. Then any
catchment basin that is completely immersed in the water is
merged with its adjacent basins [5].

Algorithm
Step 1: Read Image-Read in the 'afmsurf.tif' image, which an
atomic force microscope image of a surface is coating.

Step 2: Maximize Contrast

To minimize the number of valleys found by the watershed
transform, maximizing the contrast of objects of interest is
needed. A common technique for contrast enhancement is the
combined use of the top-hat and bottom-hat transforms.

Step 3: Subtract Images

It is seen that the top-hat image contains the "peaks" of objects
that fit the structuring element. In contrast, the bottom-hat
image shows the gaps between the objects of interest. To
maximize the contrast between the objects and the gaps that
separate them from each other, the "bottom-hat" image is
subtracted from the "original + top-hat" image.

Step 4: Convert Objects of Interest

Recall that watershed transform detects intensity "valleys" in
an image. The imcomplement function is used on our enhanced
image to convert the objects of interest to intensity valleys.

Step 5: Detect Intensity Valleys
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All intensity valleys below a particular threshold are detected
with the imextendedmin function. The output of the
imextendedmin function is a binary image. The location rather
than the size of the regions in the imextendedmin image is
important. The imimposemin function will modify the image to
contain only those valleys found by the imextendedmin
function. The imimposemin function will also change a valley's
pixel values to zero (deepest possible valley for uint8 images).
All regions containing imposed minima will be detected by the
watershed transform.

Step 6: Watershed Segmentation

Watershed segmentation of the imposed minima image is
accomplished with the watershed function.

Step 7: Extract Features from Label Matrix

Features can be extracted from the label matrix with the
regionprops function. For example, two measurements (area
and orientation) are calculated and viewed as a function of one
another.

Summary
Marker selection can range from simple procedures as used
above to very complex methods involving size, shape, location,
relative distances, and texture content and so on. The usage of
internal and external markers brings a priori knowledge to bear
on the segmentation problem. Humans often aid segmentation
and higher level tasks in everyday vision by using a priori
knowledge. Thus, the fact that segmentation by watersheds
offers a framework that can make effective use of this type of
knowledge is a significant advantage of this method.

However, watersheds have a major drawback in forming the
catchment basins exactly to the shape of the given image.
Hence, they are the better algorithm for segmentation of art
images but not frequently used for segmentation of medical
images.

Expectation Maximization
For the task of segmenting head MR images into the three
normal brain classes (grey matter, white matter, and
cerebrospinal fluid), Expectation Maximization have shown to
be robust to both intensity in-homogeneity and intensity non-
standardization. This algorithm consists of an Expectation step
where the tissue class parameters are computed given the
current estimation of the in-homogeneity field, and a
Maximization step where the in-homogeneity field is computed
given the current estimation of the tissue class parameters. This
algorithm interleaves Probability Density Function (PDF)
estimation for each tissue class (gray matter, white matter, and
CSF), classification, and bias field correction using the classic
EM approach. The EM Segmentation algorithm (EMS) uses a
spatial atlas from the Statistical Parametric Mapping (SPM)
package for initialization and classification. The SPM atlas
contains spatial probability information for brain tissues. It was
created by averaging segmentations of normal subjects that had
been registered by an affine transformation. This spatial atlas is

registered to the patient data, with an affine transformation,
providing spatial prior probabilities for the tissue classes. The
PDFs are then initialized based on the atlas probabilities. The
algorithm depends on T1 pre- and post-contrast images from
MRI.

Algorithm
Identify the intensity and spatial outliers and detect the
abnormalities.

1. Initial densities for normal brain tissues obtained using
probabilistic brain atlas.

2. Image data is registered via affine transformation.
3. Training samples is constrained to be voxels (p=85%).
4. MCD technique is used in location and dispersion of

samples.
5. Trimming training samples done by MST and edge

breaking.
6. Estimate PDF for each class and locate the voxels with

abnormal intensities (regions with low posterior
probabilities)

7. Then the density approximation is done using Kernel
expansion, where the bandwidth set is to be 4% of the data
range and Class the label including gray & white matter,
CSF, etc.

Summary
A model-based segmentation method is developed for
segmenting head MR image datasets with tumors and
infiltrating edema. This is achieved by extending the spatial
prior of a statistical normal human brain atlas with individual
information derived from the patient's dataset. Thus, the
statistical geometric prior with image-specific information for
both geometries of newly appearing objects is combined, and
probability density functions for healthy tissue and pathology.
This procedure can handle large variation of tumor size,
interior texture, and locality. The method provides a good
quality of healthy tissue structures and of the pathology, a
requirement for surgical planning or image-guided surgery.
This allows the algorithm to be fully automatic.

Results
The result of the algorithms used has been shown in the
following figures 1-3 simulated using MATLAB with an input
obtained from a scan center (25 sets of real data) and offline
images [6-8]. MR pulse spin echo sequence parameters used in
the analysis are:

1. Gadolinium enhanced, fat suppressed T1 weighted image
with TE < 30, TR < 800, flip angle 90°

2. Fat suppressed, fluid attenuated T2 weighted image with
TE > 80, TR > 2000, flip angle 90°
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Figure 1. Output of K-Means Algorithm with 5 clusters.

Figure 2. Output of Watershed Segmentation.

Figure 3A. EM output image.

Figure 3B. EM reconstructed image.

Conclusion

Performance analysis
Performance analysis of segmentation algorithms, viz. K-
means, Watersheds and Expectation Maximization algorithms
has been compared both quantitatively and qualitatively for
simulated MR brain images. In order to compare the
performances quantitatively, the same definition of an error
measure can be adopted in terms of the misclassification rate,
which is defined as the number of pixels misclassified by the
algorithm divided by the total number of pixels in the image.

Table 1. Misclassification Rate for T-1 Weighted Images.

Method CSF GM WM Average MCR

K-Means 2.890451 2.319571 6.159486 3.789836

Watersheds 3.623580 2.187369 5.636681 3.815877

EM 2.896461 2.403702 6.147467 3.815877

The table 1 summarizes the error measures obtained by the
three methods when applied on a T-1 weighted [1-mm
thickness, 3% noise, 20% INU, X=0.0, Y=-18.0, Z=14.0]
simulated MR images. From the table, we find that the
performance of the average MCR is same for EM and
Watersheds and is slightly less for K-means.

Table 2. Misclassification Rate for T-2 Weighted Images.

Method CSF GM WM Average MCR

K-means 2.319572 2.349618 7.890151 4.186447

Watersheds 2.770266 1.346073 2.902470 2.339603

EM 2.361637 2.337600 7.962262 4.220500

The results presented in the above table 2 show that the
performance of the proposed methods, while segmenting the
T-2 weighted [1-mm thickness, 0% noise, 0% INU, X=0.0,
Y=-18.0, Z=24.0] simulated MR brain images. The results
presented in the above table show that the performance of K-
means and EM is better than Watershed.

The performance of these algorithms can also be validated
based on two important parameters:

1. Time Complexity of the algorithm used
2. Volume of Tumor occupancy shown by different algorithms

It is very essential to find the volume of the tumor for better
accurate results. The area is determined by selecting the tumor
region and calculating the pixel values and adding the values.
This method will provide a good result with less effort. The
algorithms are validated taking into account certain
considerations. The output obtained by using different
algorithms is derived from same input image. It is inferred that
by initializing the number of clusters equal to 10 for K-means
and that of EM is 5, the results obtained are identical. As the
number of clusters increases, the results obtained from K-
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means algorithm will be better. The following were tested with
a database of 100 MRI brain images (both online and offline).
The inference is analyzed for two broad categories (Table 3).

• Non-Tumorous image (Normal Brain)
• Abnormal Tissue

Table 3. Results for Non-Tumorous image.

Parameters K-means Watershed EM

Volume of tumor occupied NIL NIL NIL

Time Complexity 65.75 3.25 30.75

Non-Tumorous (Normal Brain): The time complexity
involved is measured in seconds and the volume occupied by
the tumor is measured in percentage volume of the tumor
occupied with respect to total volume of the image. For a
tumorous image analyzed, the following results are obtained
(Table 4).

Table 4. Results for a tumorous image.

Parameters K-means Watershed EM

Volume of tumor occupied 2.8046 2.887 2.89

Time Complexity 38.156 3.53 31.5

Tumorous Tissue (Abnormal Brain): The time complexity
involved is measured in seconds and the volume occupied by
the tumor is measured in percentage volume of the tumor
occupied with respect to total volume of the image.

Statistical set
Any quantitative decisions about a process or a scheme can be
made effective by a mechanism of providing a statistical test.
The aim is to determine whether there is enough evidence to
"reject" a speculation or hypothesis about the process made.
Axial view images of brain MRI are tested using a confusion
matrix, which normally consist of information about actual and
predicted classifications which is done by a classification
system. A confusion matrix illustrates the number of correct
and incorrect predictions made by the model compared with
the actual classifications in the test data. Performance of such
systems is normally calculated by using the data in the matrix.
A total of 25 axial view images were handled to test the
effectiveness of the algorithms [through images obtained from
scan center and literature. Sensitivity and specificity are the
two statistical measures of the performance of a binary
classification test in addition to accuracy. In statistics it is also
known as classification function. Sensitivity measures the
percentage of actual positives values which are correctly
identified whereas specificity measures the percentage of
negative values which are correctly identified. The
classification was based on the confusion matrix which
consists of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). The images which are
collected from the database were normal as well as cancerous

brain images. In this paper there are total 25 test cases in which
14 cases are TP. Sometimes, test results show cases of no
tumor but there will be actual tumor present. These are called
FN. There are 8 such cases in our test. Some cases don't have
the tumor, and the test says they don't, they are TN and in our
test there are 2 such cases. Finally the set showed a normal
brain MRI image and have a positive test result, called as FP;
only one case was recorded in the set. FNs and FPs are
significant issues in medical testing. The following table 5
illustrates the results obtained in terms of Accuracy, Sensitivity
and Specificity when tested on the data using the above
mentioned algorithms.

Table 5. Comparison on parameters.

Parameters Formula used Percentage (%)

Accuracy (TP+TN)/(TP+FP+FN+TN) 65.0

Sensitivity TP/(TP+FN) 63.6

Specificity TN/(FP+TN) 66.7

Observation
It is observed from the findings that Watershed algorithm
segments the image in a lesser time than the other algorithms,
but as mentioned before, the algorithm faces the problem of
forming the catchment basins for complicated images. With
normal tissue the Watershed Algorithm shows reduced time
complexity. The K-means algorithm takes some time to
segment the image as the cluster size is increased in order to
obtain good results.

It is also observed that the volume of tumor analyzed by
different algorithms show almost equal percentage of tumor.
The EM algorithm shows fairly good results in terms of time
required to execute the segmentation process as well as the
volume of delineation present. The patient data was derived
from an MRI center and duly attested by a medical expert. The
above data was used for the analysis and it has been shown that
results closely match with that of the medical expert’s
interpretation thereby, the robustness of the algorithms has
been proved effective. The datasets collected in which tumor is
present mainly had meningioma as the other tumor glioma, was
very rare to be found with its ragged boundaries.

This tumor segmentation framework has been applied to
different datasets, including a wide range of tumor types and
sizes. The All datasets were registered to the atlas using
information registration. A model-based segmentation method
for segmenting head MR image datasets with tumors has been
developed. This is achieved by extending the spatial prior of a
statistical normal human brain atlas with individual
information derived from the patient's dataset. Applications to
different tumor patients with variable tumor appearance
demonstrated that the procedure can handle large variation of
tumor size, interior texture, and locality.
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Future scope
The automated segmentation techniques provide a wide range
of applications like image guided surgery, volume visualization
of regions of interest, medical diagnosis and serves an aid to
detect other neurological diseases. Though automated, it
requires verification of results from a doctor (to be certified by
a competent medical professional before starting treatment). It
is also seen from the table that accuracy obtained by individual
methods on an average is not convincing. Hybrid algorithms
may reduce time complexity further, give accurate area of
tumor occupied and aim in improving the accuracy, sensitivity
and specificity [9,10].
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