Precision medicine: Personalized care, ai, ethics, equity.

James Carter*

Department of Genomic Medicine, Stanford University, California, USA

Introduction

This piece discusses the transformative impact of precision medicine in oncology, highlighting how genomic sequencing and molecular profiling are leading to personalized cancer treatments. It emphasizes the importance of identifying specific biomarkers to guide targeted therapies, thereby improving patient outcomes and minimizing adverse effects.[1].

This review explores the application of precision medicine to rare diseases, where personalized approaches are particularly crucial due to disease heterogeneity and limited treatment options. It covers advancements in genomic diagnostics, gene therapies, and repurposing existing drugs, emphasizing the potential to tailor interventions based on individual genetic profiles, offering hope for patients with complex and often undiagnosed conditions.[2].

This article argues for the immediate clinical implementation of pharmacogenomics as a cornerstone of precision medicine. It highlights how genetic variations influence drug response, emphasizing the potential to optimize drug selection and dosing, thereby enhancing therapeutic efficacy and reducing adverse drug reactions. The authors discuss the accumulated evidence and practical tools that support broader clinical adoption.[3].

This article examines the expanding role of precision medicine in cardiovascular disease, focusing on how genetic, proteomic, and lifestyle data can personalize risk assessment and treatment strategies. It discusses the application of precision approaches in preventing, diagnosing, and managing conditions like heart failure and coronary artery disease, aiming to move beyond a one-size-fits-all model.[4].

This article delves into the intersection of artificial intelligence and precision medicine, exploring how Artificial Intelligence (AI) algorithms can analyze complex multi-omics data to identify disease biomarkers, predict drug responses, and personalize treatment plans. It outlines the opportunities AI presents for accelerating drug discovery and improving diagnostic accuracy, while also addressing the inherent challenges in data integration and ethical considerations. [5].

This scoping review addresses the significant ethical and legal challenges arising from the implementation of precision medicine. It examines issues such as data privacy, informed consent for genomic data, equitable access to personalized therapies, and the potential for genetic discrimination, highlighting the need for robust frameworks to navigate these complex societal implications.[6].

This article explores the growing application of precision medicine in managing infectious diseases, moving beyond traditional broad-spectrum approaches. It highlights how rapid pathogen identification, genomic sequencing for antimicrobial resistance, and host-response profiling can lead to highly targeted diagnostics and individualized therapies, improving treatment efficacy and combating the rise of drug-resistant pathogens.[7].

This review focuses on the nascent field of precision medicine for neurodegenerative diseases, acknowledging the complexities of the brain and the heterogeneity of conditions like Alzheimer's and Parkinson's. It discusses the potential of advanced biomarkers, genetics, and patient-specific models to develop targeted therapies and preventative strategies, moving towards personalized interventions for these debilitating conditions.[8].

This article dissects how precision medicine is fundamentally altering the landscape of clinical trial design. It explores innovative trial methodologies like adaptive designs, basket trials, and umbrella trials, which are better suited to evaluate targeted therapies in molecularly defined patient subgroups. The piece emphasizes the shift from traditional large, heterogeneous trials to more efficient, biomarker-driven studies.[9].

This paper critically examines the challenge of health disparities within the context of precision medicine. It highlights how genetic, socioeconomic, and environmental factors contribute to unequal access and benefit from personalized healthcare. The authors advocate for inclusive research, diverse data sets, and policy interventions to ensure precision medicine's promise reaches all populations, rather than exacerbating existing inequities.[10].

*Correspondence to: James Carter, Department of Genomic Medicine, Stanford University, California, USA. E-mail: james.carter@stanfordmed.edu

Received: 03-Apr-2025, Manuscript No. aatr-181; **Editor assigned:** 07-Apr-2025, Pre QC No. aatr-181 (*PQ*); **Reviewed:** 25-Apr-2025, QC No. aatr-181; **Revised:** 06-May-2025, Manuscript No. aatr-181 (*R*); **Published:** 15-May-2025, DOI: 10.35841/aatr-9.2.181

Conclusion

Precision medicine is changing how we approach healthcare by customizing treatments based on individual genetic makeup, environment, and lifestyle. For example, in oncology, genomic sequencing and molecular profiling now guide personalized cancer treatments, leading to better patient outcomes and fewer side effects [1]. This personalized approach also makes a huge difference for rare diseases, offering hope through genomic diagnostics and gene therapies [2]. You see this in pharmacogenomics too, where understanding genetic variations helps optimize drug selection and dosing, making treatments more effective and reducing adverse reactions [3]. It's even improving how we handle cardiovascular disease, using genetic and lifestyle data for tailored risk assessments and treatment plans [4].

Artificial Intelligence (AI) is key to this, analyzing complex multiomics data to find disease markers, predict drug responses, and speed up drug discovery [5]. Precision medicine also helps manage infectious diseases by quickly identifying pathogens and using genomics to fight drug resistance [7]. When it comes to tough conditions like Alzheimer's and Parkinson's, advanced biomarkers and genetics are paving the way for personalized interventions [8]. But there are real challenges. Things like data privacy, getting informed consent for genomic data, fair access to personalized therapies, and preventing genetic discrimination need solid frameworks [6]. Plus, precision medicine is reshaping clinical trial design, pushing for more efficient, biomarker-driven studies [9]. A big part of this is making sure the promise of personalized healthcare reaches every-

one, actively addressing health disparities to avoid making existing inequalities worse [10].

References

- Fabrice A, Jean-Pierre D, Ron G. Precision Medicine in Oncology. J Thorac Oncol. 2020;15:153-156.
- 2. Ekaterina A, Alexander K, Natalya V. Precision Medicine for Rare Diseases: *A Comprehensive Review. Genes* (Basel). 2021;12:1510.
- 3. Mary V R, Diane L K, Todd C S. Pharmacogenomics: *The Time for Clinical Implementation Is Now. Annu Rev Pharmacol Toxicol.* 2022;62:1-20.
- 4. Nicholas A M, Wayne D R, Justin J F. Precision Medicine for Cardiovascular Disease. Circulation. 2023;147:1515-1529.
- Haodi C, Jie H, Xiaonan L. Artificial Intelligence in Precision Medicine: *Opportunities and Challenges. Front Genet.* 2024;15:1347895.
- Mari R T, Synne E, Anna K. Ethical and legal challenges in precision medicine-a scoping review. J Transl Med. 2020;18:97.
- Alyssa M O, Lucas C M, Stephanie C J. Precision Medicine for Infectious Diseases: From Diagnosis to Therapy. Clin Infect Dis. 2021;73:711-719.
- 8. Malú G T, Matthew S G, Stuart M. Precision Medicine in Neurodegenerative Diseases: *An Emerging Frontier. Ann Transl Med.* 2022;10:332.
- 9. Richard S, Franz C G, Myra Y P. The impact of precision medicine on clinical trial design. Nat Rev Clin Oncol. 2021;18:627-640.
- Suresh R, Ruhul K, Mohammad R. Addressing Health Disparities in Precision Medicine. J Pers Med. 2023;13:281.

Citation: Carter J. Precision medicine: Personalized care, ai, ethics, equity. aatr. 2025;09(02):181.

aatr, Volume 9:2, 2025