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Abstract

The measurement of endothelial dysfunction (ED) has importance in that it indicates the presence of
coronary artery disease in addition to acting as a predictor of future adverse events. Various tools,
methods, and metrics exist that can provide an indicator of endothelial dysfunction. Given the
significance of ED, it is of utmost importance to find a measurement technique that is reliable, while
defining a metric providing a framework for an overall system that is practical, accurate, and
repeatable. Success would provide a tool for early detection of cardiovascular disease not only moving
patients that are currently classified as asymptomatic to symptomatic but also providing a method to
monitor efficacy of treatments.
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Background
ED is defined as a condition in which the inner lining of the
artery, the intima, does not function normally [1-3]. It can be
quantified via measurement of arterial vasodilation in response
to drug administration or other physiological stimuli that would
normally result in increased arterial flow as a response to
endothelium derived nitric oxide in a healthy individual.

Stimuli involved in endothelial dysfunction measurement
include drug administration, cold pressor testing, and reactive
hyperemia while associated metrics include thermal changes,
cardiac output measurements, pulse wave velocity, flow
mediated dilation, and changes in arterial compliance. Genome
analysis can also be used to detect endothelial dysfunction.
Healthy endothelial function is associated with the
measurement of increased arterial flow, increased arterial
diameter, and increased arterial compliance following drug
administration, reactive hyperemia, or cold pressor testing.

Associated technologies used to perform these measurements
include; duplex ultrasonography, arterial tonometry,
plethysmography, electromagnetic flowmeter, intravascular
ultrasound (IVUS), liquid metal/mercury strain gage (LMSG),
magnetic resonance imaging, and genetic analysis. Only the
most prominent of these technologies will be explored in later
sections.

Measurement and Stimuli

Drug administration
Various drug classifications exist that can have a significant
effect on vasodilation and demonstrate improved endothelial
function. Some of these include antihypertensive therapies
(acetylcholine, adenosine 5’diphosphate, and thrombin) [4-7]
angiotensin converting enzyme inhibitors [8-11], and Substance
P [12]. It has even been observed that Vitamin C stimulates a
significant improvement in flow mediated dilation (FMD)

measured endothelial dysfunction improvements [13]. These
drugs result in arterial vasodilation in subjects with a healthy
endothelium that are able to exhibit normal endothelial
function.

Cold pressor
The cold pressor test takes place when a subject submerges
their hand into a container of ice water resulting in sympathetic
nervous system activated vasodilation [14]. The measured
effect can be seen in both coronary arteries as well as in
contralateral hand immersion where brachial artery
measurements are performed. Both coronary artery and
brachial artery vasoconstriction have been observed in patients
with cardiovascular disease following cold pressor stimulation
[15-18]

Reactive hyperemia
Reactive hyperemia is defined as an increase in blood flow that
takes place after a brief period of ischemia (e.g. arterial
occlusion) [19]. Reactive hyperemia experiments have been
shown to have the following results [20].

• Increased arterial compliance
• Increased arterial area

As a result of this increased arterial compliance and area,
increased arterial flow also results.

The following factors can cause a reduction in smooth muscle
activity and subsequent arterial vasodilation [21,22].

• Increased carbon dioxide levels
• Increased metabolic activity
• Increased flow velocity stimulating the release of

endothelium derived relaxing factors (EDRF) (e.g. nitric
oxide and prostacyclin).
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Measurement – Technology Platforms

Duplex ultrasonography
Duplex ultrasonography is defined as ultrasonography that
combines standard Bmode ultrasonography with pulsed
Doppler signals. In summary, B mode ultrasonography is
brightness modulated display ultrasonography with imaging
capability. As a result, duplex ultrasonography has the
capability to provide images of cardiovascular structures and
conduits in addition to blood flow [23].

Ultrasound imaging provides the dimensions of organs,
vessels, and tissues in a variety of medical applications. There
are two fundamental relationships in ultrasonic imaging. The
first is:

• d=0.5 tc

where d is the distance of an object from the transducer, t is the
round trip transit time from the transducer to the object, and c
is the speed of sound in the medium. The relationship provides
the distance that an object is from the transducer as a function
of the transmission signal transit time and speed [24].

The second relationship in the frequency domain expresses the
received signal strength, S(f), as a function of transmitted
signal strength, T(f), transducer properties, B(f), strength of
scatter, n(f), and the attenuation of the signal path to and from
the scatterers, A(f).

• S (f)=T (f) B (f) A (f) n (f)

A 2D image of the artery can be found from the ultrasound
signal. The diameter of the brachial artery can be obtained
from this image.

Intravascular Ultrasound (IVUS)
IVUS is Bmode ultrasonography that takes place via an
ultrasound transducer placed at the tip of a catheter [25].
Although the general use of IVUS is in conjunction with an
arterial angiography or stent placement to provide diagnostic
information related to plaque distribution and composition,
location of calcium, and lesion severity, it has been used to
provide measurements of the metrics associated with
endothelial dysfunction measurement.

One possible use is via placement of an IVUS catheter into the
brachial artery such that intraarterial pressure, crosssectional
area, and wall thickness were obtained [26]. As a result, the
following brachial artery metrics were calculated:

Brachial artery crosssectional compliance (C):

C=[a/(π × c)]/[1/(P/c-b/c)2]

where P is transmural pressure, defined as mean arterial
pressure minus external pressure applied by a cuff, and a, b,
and c are parameters that characterize an arterial pressurearea
curve via a model developed by Langewouters [27].

Additional cardiovascular metrics that can be obtained via
IVUS include:

Incremental elastic modulus (Einc):

Einc=0.75 × (dσ/dε)

The dσ/dε is determined from changes in:

Circumferential wall stress (σ):

σ=P x (rm/h)

where rm is midwall radius and h is wall thickness

Circumferential strain (ε)

ε=(rm/ro)

where ro is the effective unstressed midwall radius (midwall
radius at 0 transmural pressure)

Pulse wave velocity (PWV) via the MoensKortoweg equation:

PWV=[(Einc x h)/(2d × ri)]1/2

where d is blood density (1.055 g/ml) and ri is the inner radius
of the artery.

IVUS has the capability to provide important metrics
associated with endothelial dysfunction measurement.
However, IVUS is an invasive procedure and is only capable of
providing information in the positive transmural pressure
region of the artery [28]. Increased pulse wave velocity is an
indicator of cardiovascular disease.

Transcutaneous brachial artery duplex
ultrasonography
Ultrasound can also be used to obtain lumen measurements of
peripheral arteries such as the brachial artery. Oftentimes,
electrocardiogram recordings are simultaneously obtained and
the images are consistently obtained at diastole and systole.
The brachial artery is most often imaged at a location 37 cm
above the antecubital crease and located via use of an
ultrasound attenuator that can be taped to the subjects arm.

In addition to the subjective error that can take place as a result
of edge detection, other sources of error could be introduced
based on the quality of the blood vessel image definition.
Image depth and gain settings must be properly adjusted by the
ultrasonographer to best delineate the arterial wall [29].

In addition to providing brachial artery data measurements, this
method has successfully provided measurements of aortic
diameter and flow velocity via transducer placement at the
suprasternal notch [30]. Both Doppler flow velocity and
diameters at systole and diastole can be obtained via this
method.

Magnetic resonance imaging and angiography
Magnetic resonance imaging (MRI) uses a magnetic field and
radio wave energy pulse to provide images within the body.
The images are generated using the concepts of nuclear
magnetic resonance (NMR) physics where the ultimate image
is derived from a signal generated via precession of protons
[31].

Citation: Michael D Whitt. Practicality and importance of selected endothelial dysfunction measurement techniques ‐ Review. J Biomed Imag
Bioeng. 2017;1(1):1-5.

2J Biomed Imag Bioeng. 2017 Volume 1 Issue 1



Magnetic resonance angiography (MRA) provides arterial
images in addition to blood flow information. In some cases, a
contrast medium is used to improve the arterial image. MRA
successfully provides images of both coronary and peripheral
arteries [32,33] In each setup, the magnetic resonance system
is used in conjunction with cardiac software, Food and Drug
Administration (FDA) approved MRA sequence and receiver
coil such as a cardiac synergy receiver coil or a standard
flexible extremity coil. These images provide arterial
compliance and flow measurements in addition to pulse wave
velocity (PWV) and flow mediated dilation (FMD) of the
imaged artery [34].

X‐ray angiography
Xray angiography provides arterial images via intraarterial
injection of a radiopaque dye [35]. Dimensional information
including the metric intimamedia thickness and FMD are
obtained via this methodology.

Digital imaging technologies replacement of film recording has
optimized the use of angiography. Images of the brachial artery
can be successfully obtained via intravenous digital
angiography where a catheter is inserted into the right
antecubital basilic vein and passed into the right atrium [36].

Arterial tonometry
The arterial tonometer is a pressure pulse sensor that must be
properly positioned over an artery (most often the radial artery)
located near the skin surface. The sensor must not only be
properly centered over the artery but also have the proper
pressure applied to the artery. Comparisons to intraarterial
pressure measurements have shown average errors of -5.6
mmHg for systolic pressure and -2.4 mmHg for diastolic
pressure [37]. Accurate placement of the sensor makes arterial
tonometry very operator dependent in obtaining a high
resolution pressure pulse. However, a flexible diaphraghm
tonometer can be used where proper positioning is easier and a
lower resolution pressure pulse is obtained [38].

Studies have been performed that support the use of peripheral
arterial tonometry (PAT) as a predictor of future cardiac events
with mixed results [39-41] Although there is a strong
significant positive correlation between PAT and ultrasound
arterial diameter and flow data while the subject is in a
baseline condition, no correlation was observed between PAT
data and ultrasound measured flow mediated dilation values
when the subject underwent reactive hyperemia [42].

Measurement – Thermal Platforms

Thermodilution
The classical thermodilution methodology is an invasive
method where cardiac output is measured. In summary, an
indicator (which is usually cold saline) is injected into the right
atrium and temperature in the pulmonary artery is recorded.
The relationship between temperature change and cardiac
output (CO) is: [43].

�� = �(�� − ��)60� �������� �
where

• V=volume of indicator injected in ml
• Tb=temperature average of pulmonary artery blood in

degrees Celsius
• Ti=temperature of the indicator
• 60=multiplier required to convert ml/s to ml/min
• A=area under the dilution curve in seconds x degrees

Celsius
• S=specific gravity of indicator (i) and blood (b)
• C=specific heat of indicator (i) and blood (b)
• F=empiric correction factor for heat transfer through

injection catheter

Although thermodilution is a classical method for cardiac
output measurement, errors can be introduced into the
measurement as a result of heat loss through the catheter wall,
respiration, choice of heat transfer medium, and other
environmental factors.

Digital thermal monitoring
Digital thermal monitoring uses two fingertip RTD (resistance
temperature detector) probes placed on the index finger of both
hands [44]. In two minute hyperemia experiments, it was
observed that metrics defined as temperature rebound (TR) and
area under the curve (TMP AUC) correlated closely to Doppler
ultrasound measured flow velocity. The metrics are defined as:

TR=TMPmax TMPi

where

TMPmax is the maximum temperature observed at the RTD
following the two minute reactive hyperemia occlusion

TMPi is the initial temperature observed at the RTD prior to
the two minute hyperemia occlusion

TMP AUC is defined as the area under the curve post
occlusion where the yaxis is temperature and the xaxis is time.

However, the metrics must be adjusted to account for
environment and patient factors including; room temperature,
wind/air speed, patient finger size, estimated finger thermal
properties, and estimated arteriovenous temperature drop. A
lumped capacity energy balance modeling estimated
conduction, convection, and evaporative losses of a finger are a
part of the solution [45].

Measurement – Volumetric Platforms

Plethysmography
Plethysmography is defined as a technique that measures the
volume changes in an organ, limb, or the body through the
measurement of blood flow [46] Within the classification of
plethysmography, various modalities exist including ocular
plethysmography which is a noninvasive method for measuring
blood flow via the ophthalmic artery to the brain. This
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measurement takes place via placement of suction cups on the
eyes that measure ocular pressure. However, in this section
only those modalities that are deemed to provide a practical
method for endothelial dysfunction measurement and presence
of cardiovascular disease will be discussed.

Arterial plethysmography is a manometric test used to
determine if an occlusion exists in either the upper or lower
extremities. If measured systolic blood pressure differs by
more than 20 mmHg, between the upper and lower extremities,
an arterial blockage is deemed present [47].

A photoplethysmograph requires two items, a light source and
a photodetector, and records blood volume changes through
physiological tissues and vessels noninvasively at the skin
surface [48]. The physiological area of measurement is
determined by the optical probe design light intensity and
operating wavelength [49]. As the light source illuminates the
tissue, the photodetector records the changes in light intensity
that correlate with volume changes in the area of measurement
[50].

Two photoplethysmograph frameworks exist; the transmission
(‘transillumination’) method where the light source and
photodetector are on opposite sides of the sample and
reflection (‘adjacent’) mode where the light source and
photodetector are on the same side of the sample. The primary
sources of error in photoplethysmography are movement as the
probetissue interface and ambient light in addition to concerns
with reproducibility caused by these factors in addition to
subject posture, respiration, and degree of calmness [51-53].
Although the signals obtained have a direct correlation with
blood volume changes, the signals have not been successfully
calibrated to provide actual volume magnitudes [54].

Some of the clinical metrics obtained via
photoplethysmography include: arterial oxygen saturation and
heart rate via pulse oximetry [55] in addition to blood pressure.
Although there are some issues with accuracy at low arterial
saturation levels [56] as well as unreliability issues in obtaining
ankle brachial pulse indices to assess peripheral vascular
disease using photoplethysmography [57-59] However, there
have been algorithms where frequency analysis and pulse
frequency characterization have detected a high degree of
patients with peripheral stenosis and occlusions [60-64].

The segmental plethysmograph is a technique through which
oscillometric volume pulses are obtained. Limb volumetric
changes are directly correlated to pressure or diaphragm
displacement via the mathematical relationship; [65] Ad=kdV;
where A is the diaphraghm crosssectional area, d is the
diaphraghm displacement, k is the constant that changes as a
function of system volume, and dV equals limb volumetric
displacement.

Limb volumetric displacement can be accurately and
noninvasively obtained if k can be solved for at all system
conditions. This concept provides a fundamental through
which arterial compliance and thus degree of endothelial
dysfunction can be noninvasively and accurately determined.

Measurement – Genetic Platform

Genome analysis
Genome analysis may provide a method for detection of
endothelial function in the future. Genetic polymorphisms can
be used to identify the presence of coronary endothelial
dysfunction [66,67]. Polymerase chain reaction (PCR) is a
technique that can be used to identify the DNA sequences via
the PCR DNA sequence amplification process. In summary,
the target DNA is denatured at a high temperature, cooled to
permit annealing of primers to their sites, and temperature is
readjusted to permit synthesis [68]. Analysis could be
performed via a standard PCR unit which is a large device. The
more portable Open PCR units are still evolving in the
marketplace and only a few companies manufacture these
devices.

Endothelial dysfunction metrics
The following metrics can be used to identify endothelial
dysfunction:

Flow mediated dilation (FMD) following hyperemia. Defined
as increased arterial blood flow, arterial compliance, and
arterial area following reactive hyperemia or cold pressor
testing.

Ultrasound is the tool most often associated with these
measurements. However, plethysmography is also used in
some cases.

Pulse wave velocity (PWV) calculated via the MoensKortoweg
equation: [69,70]��� = ����ℎ2��
where Einc is incremental elastic modulus, h is arterial wall
thickness, r is arterial radius, and ρ is blood density.

Following reactive hyperemia or cold pressor testing, PWV has
a measureable decrease for patients without endothelial
dysfunction. Ultrasound is most commonly used to provide this
measurement.

Conclusion
The measurement of endothelial dysfunction (ED) has clinical
importance in that ED is an independent predictor of future
cardiovascular adverse events. Many of the tools discussed
have application issues that include practicality of use,
accuracy, degree of invasiveness, etc. However, a tool based on
the fundamentals of segmental plethysmography would
provide a tool that would not only be noninvasive but accurate.
Such a tool would have the greatest potential to have an impact
on cardiovascular disease via early detection and a practical
method for monitoring efficacy of treatments.
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