Pharmacovigilance transformed: Ai, rwd, proactive safety.

Fatima Khan*

Department of Pharmacovigilance, Aga Khan University, Karachi, Pakistan

Introduction

The field of pharmacovigilance is seeing profound changes, with Artificial Intelligence (AI) playing a key role. This article explores AI's application in pharmacovigilance, highlighting its current uses in adverse drug event detection, signal generation, and data analysis. It also discusses the implementation challenges, such as data quality and ethical considerations, and projects future directions for AI in enhancing drug safety and efficacy [1].

Practical guidance for utilizing Real-World Data (RWD) in pharmacovigilance, stemming from a multi-stakeholder initiative, is now available. This paper emphasizes RWD's potential to complement traditional safety data, improve signal detection, and offer more comprehensive insights into drug safety profiles in diverse patient populations. Challenges like data quality, access, and regulatory acceptance are also addressed [2].

Comparisons between pharmacovigilance systems in Europe and the United States reveal how regulatory bodies manage and mitigate drug safety risks in both regions. The article details differences and similarities in their approaches to adverse event reporting, signal detection, and risk management strategies, offering insights into best practices and areas for potential collaboration [3].

A concept of 'Proactive Pharmacovigilance' has been introduced, advocating for a shift from reactive monitoring to anticipatory risk management. This paper discusses strategies for early signal detection, integration of diverse data sources, and the use of advanced analytics to identify potential safety issues before they become widespread, thereby enhancing overall drug safety [4].

Modern pharmacovigilance approaches are being introduced, outlining key concepts, methods, and the evolving landscape of drug safety. This article addresses challenges such as managing increasing data volumes, incorporating real-world evidence, and leveraging new technologies to improve the detection and assessment of adverse drug reactions [5].

Global pharmacovigilance systems face current challenges and opportunities for improvement. One paper discusses the need for harmonization of regulations, enhanced international collaboration, and effective data sharing across diverse healthcare settings to ensure comprehensive monitoring of drug safety worldwide [6].

Social media's dual aspects in pharmacovigilance are also explored, recognizing both its potential and inherent challenges. This article discusses how platforms like Twitter and Facebook can serve as rich sources for detecting adverse drug reactions and generating safety signals, while highlighting concerns regarding data credibility, privacy, and the need for robust analytical tools [7].

The growing role of Artificial Intelligence (AI) in pharmacovigilance is reviewed, summarizing applications such as automated adverse event detection, text mining of unstructured data, and predictive modeling for drug safety. It highlights AI's capability to manage vast datasets and accelerate signal detection, while pointing out limitations and areas for future development [8].

Digital health technologies impact pharmacovigilance, presenting both challenges and opportunities. This article discusses how electronic health records, mobile health apps, and wearables can generate enormous amounts of data for safety monitoring, while also addressing the complexities of data integration, analysis, and ensuring data quality and privacy [9].

The evolving scope of pharmacovigilance is discussed, moving beyond traditional drug safety monitoring to encompass broader public health considerations. This paper highlights how pharmacovigilance now plays a crucial role in understanding drug effects in real-world settings, informing public health policies, and contributing to patient care and medication optimization [10].

Conclusion

Pharmacovigilance is undergoing significant transformation, embracing advanced technologies and diverse data sources to enhance drug safety. Artificial Intelligence (AI) is increasingly used for adverse drug event detection, signal generation, and data analysis, though challenges exist with data quality and ethical considerations. Real-world data (RWD) complements traditional safety information, offering comprehensive insights into drug safety in varied patient populations, despite concerns about data quality and regula-

*Correspondence to: Fatima Khan, Department of Pharmacovigilance, Aga Khan University, Karachi, Pakistan. E-mail: fatima.khan@aku.edu.pk

Received: 01-Aug-2025, Manuscript No. aajcrp-186; **Editor assigned:** 05-Aug-2025, Pre QC No. aajcrp-186 (*PQ*); **Reviewed:** 25-Aug-2025, QC No. aajcrp-186; **Revised:** 03-Sep-2025, Manuscript No. aajcrp-186 (*R*); **Published:** 12-Sep-2025, DOI: 10.35841/aajcrp.7.2.186

Citation: Khan F. Pharmacovigilance transformed: Ai, rwd, proactive safety. aajcrp. 2025;08(03):186.

tory acceptance. The field is shifting towards Proactive Pharmacovigilance, which emphasizes anticipatory risk management and early signal detection through integrated data and advanced analytics. Modern approaches address the complexities of increasing data volumes, incorporating real-world evidence, and leveraging new technologies for improved adverse drug reaction assessment. Social media also serves as a rich, albeit challenging, source for detecting adverse drug reactions, while digital health technologies like electronic health records and wearables generate vast amounts of data, presenting both opportunities and complexities in data integration. analysis, quality, and privacy. Globally, efforts focus on harmonizing regulations, fostering international collaboration, and effective data sharing to ensure comprehensive drug safety monitoring. The scope of pharmacovigilance expands beyond drug safety to encompass broader public health considerations, influencing policies and patient care in real-world settings. Regulatory bodies in regions like Europe and the United States continue to refine their approaches to mitigate drug safety risks, highlighting areas for potential collaboration.

References

 Mohamed MH, Karim MH, Salma TS. Artificial intelligence in pharmacovigilance: current state, challenges, and future directions. Expert Opin Drug Saf. 2024;23:161-177.

- Isabelle S, Anne-Sophie JVDV, Maria-Pia F. Real-World Data for Pharmacovigilance: Practical Guidance from a Multi-Stakeholder *Initiative*. *Drug* Saf. 2023;46:991-1002.
- 3. Julia S, Daniel GA, Daniel RM. Pharmacovigilance in Europe and the United States: *How Regulators Mitigate Drug Safety Risks. Clin Pharmacol Ther.* 2023;114:184-190.
- 4. Stella G. M. Chu, Andrew D. Brown, Jean M. Kim. Proactive Pharmacovigilance: A New Era in Drug Safety. Drug Saf. 2022;45:1109-1118.
- Miriam MWJ, Jean MK, Jarno KH. Pharmacovigilance and drug safety: an introduction to modern approaches and challenges. Br J Clin Pharmacol. 2022;88:10-21.
- Arie-Pieter VDP, Jarno KH, Robert MJ. Global Pharmacovigilance: Current Challenges and Opportunities for Improvement. Drug Saf. 2021;44:1293-1304.
- Fatemeh Y, Hanieh M, Mohammad RS. Social Media and Pharmacovigilance: Opportunities and Challenges. Basic Clin Pharmacol Toxicol. 2021;128:297-306.
- Jarno KH, Robert MJ, Patrick CM. The role of artificial intelligence in pharmacovigilance: a review of the literature. Br J Clin Pharmacol. 2020;86:22-30
- 9. Mirjam JV, Jarno KH, Robert MJ. Pharmacovigilance in the Age of Digital Health: *Challenges and Opportunities*. *Drug Saf.* 2020;43:1239-1250.
- Robert MJ, Patrick CM, Laura BM. The Expanding Scope of Pharmacovigilance: From Drug Safety to Public Health. Clin Pharmacol Ther. 2019;106:969-975.

Citation: Khan F. Pharmacovigilance transformed: Ai, rwd, proactive safety. aajcrp. 2025;08(03):186.

aajcrp, Volume 8:3, 2025