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Abstract 
 

We tested the ability of the drug pentoxifylline to inhibit the activity of the vasoactive 
hormone angiotensin II in vascular smooth muscle cells. Cell proliferation, intracellular 
cAMP, and expression of cell cycle proteins were measured in cells isolated from male 
Sprague-Dawley rats. Angiotensin II significantly induced proliferation in VSMCs (p < 0.01). 
Pentoxifylline significantly blocked this induction in a dose-dependent manner (p < 0.05), and 
a dose of 0.5 mM was sufficient to completely reverse the effect of angiotensin II. Angiotensin 
II reduced production of cAMP from 34.62 ± 0.59 pmol/mg protein in untreated cells to 17.49 
± 3.30 pmol/mg protein (p < 0.05). cAMP production was restored to 40.68 ± 0.49 and 41.50 ± 
1.78 pmol/mg protein in the presence of 1.0 and 2.0 mM pentoxifylline, respectively. In 
addition, the same treatments increased cAMP production in untreated cells to 54.82 ± 4.40 
and 67.68 ± 4.29 pmol/mg protein, respectively (p < 0.05). Angiotensin II significantly 
upregulated (p < 0.05) cyclin D1 mRNA 2-fold, but not cyclin E, cyclin A, CDK2, CDK4, or 
P27. Pretreatment with pentoxifylline prevented this effect. Similarly, the drug blocked the 
ability of angiotensin II to increase the abundance cyclin D1 protein. Conclusion: 
Pentoxifylline attenuated angiotensin II-induced proliferation by stimulating cAMP 
production and partially regulating the cell cycle. However, studies are required to investigate 
the effects of the drug on the hypertensive vessel wall. 
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Introduction 
 
The renin-angiotensin system is a pathologic in vascular 
injury [1,2]. In this system, the vasoactive hormone 
angiotensin II constricts and enhances resistance in blood 
vessels to increase blood pressure [3]. In addition, the 
hormone stimulates DNA synthesis, cell division, and 
proliferation in vascular smooth muscle cells (VSMCs) 
[4], which maintain vascular integrity and tone. Under 
pathologic conditions, these cells also remodel arteries 
[5,6], especially when stimulated by mitogens such as 
angiotensin II, platelet-derived growth factor, and 
transforming growth factor-β1 [7]. While vascular injury 
is complex and attributable to many factors such as cell 
migration, growth, apoptosis, calcification, and 
inflammation [7,8], the activities of angiotensin II 
indicate that it is a major catalyst of hypertensive vascular 
damage due to tissue remodeling [9].  
Pentoxifylline, a non-selective inhibitor of cyclic-3’,5’-

phosphodiesterase, is used to treat peripheral vascular 
disease [10]. The drug inhibits cell proliferation, 
inflammation, and fibrosis [11,12] via the cAMP pathway 
[13]. Although cAMP is well known to modulate vascular 
proliferation, it is unclear whether pentoxifylline could 
block angiotensin II-induced proliferation in VSMCs, or 
whether its anti-proliferative activity is linked to cell 
cycle proteins. Therefore, we analyzed the effect of the 
drug on proliferation and the cell cycle in angiotensin II-
stimulated cells.  
 
Materials and Methods 
 
Cell culture 
VSMCs were isolated from the thoracic aorta of male 
Sprague-Dawley rats (weight, 180–200 g). Cells were 
grown to subconfluence at 37 °C in a humidified 
atmosphere of 95% air and 5% CO2 in Dulbecco’s 
modified Eagle’s media supplemented with 10% fetal 
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bovine serum, 25 mM HEPES pH 7.4, 100 U/mL 
penicillin, and 100 μg/mL streptomycin. After 4–8 
passages, cells were cultured for 24 h in 0.1% fetal bovine 
serum prior to experiments, in which cells were cultured 
in 5.5 mM normal glucose, pretreated for 30 min with 
pentoxifylline, and stimulated with 1 μM angiotensin II 
(Sigma-Aldrich, St. Louis, USA). Cells were harvested 24 
h thereafter for analysis of mRNA and protein expression. 
Data were collected from triplicate experiments. 
 
Proliferation assay  
Cells were seeded in 96-well plates at 1 × 105 cells/well, 
and grown to confluence, at which point the medium was 
replaced by fresh serum-free medium. Cultures were then 
incubated at 37 °C for 4 h with 100 μL 0.5 mg/mL 3-(4, 
5-di-methylthizol-2-yl)-2, 5-diphenyl tetrazolium bromide 
(MTT), washed with phosphate-buffered saline, lysed 
with 100 μL dimethyl sulfoxide, and shaken for 10 min. 
Finally, absorbance was measured at 570 nm using an 
automatic microplate reader to determine the amount of 
MTT reduced to formazan (Molecular Devices, 
Sunnyvale, CA) 
 
cAMP assay 
Media were removed from cultures, and cells were 
incubated for 20 min at room temperature in 500 μL cold 
0.1 N HCl. Cells were then scraped and pelleted by 
centrifugation at 1000 ×g for 10 min. Extracts were 
acetylated, and cAMP content was measured by an 
enzyme immunoassay kit (Cayman Chemical Company, 
Ann Arbor, USA), following the manufacturer’s 
instructions. cAMP levels were normalized to protein 
concentrations, which were determined using Advanced 
Protein Assay Reagent (Bio-Rad, Hercules, USA).  
 
Real time reverse transcriptase-polymerase chain 
reaction (RT-PCR)  
Total RNA was extracted using TRIzol and was reverse-
transcribed using a cDNA synthesis kit (Fermentas, 
Burlington, Canada) as previously described [14]. Gene 
expression was measured by real time RT-PCR using the 
SYBR Green Master mix and standard three-step cycles. 
Data were normalized to those of the housekeeping gene 
GAPDH. Primers were designed using Primer 3 software 
and had the following sequences: cyclin A1, sense 5’ 
CAGTACTTAAGGCGGCAAGG 3' and anti-sense 5’ 
TAAGCTGCTGCTGCTACCAA 3'; cyclin D1, sense 5’ 
AGGGGATTCAGGACGACTCT 3' and anti-sense 5’ 
GGGCAACCTTCCCAATAAAT 3'; cyclin E1, sense 5’ 
ATGTCCAAGTGGCCTACGTC 3' and anti-sense 5’ 
GCGAGGACACCATAAGGAAA 3'; P27, sense 5’ 
CAGAATCATAAGCCCCTGGA 3' and anti-sense 5’ 
TCTGACGAGTCAGGCATTTG 3'; cyclin-dependent 
kinase 4 (CDK4), sense 5’ 
GAAGACGACTGGCCTCGAGA 3' and anti-sense 5’ 
ACTGCGCTCCAGATTCCTCC 3'; CDK2, sense 5’ 

TGACCAACTCTTCCGGATCT 3' and anti-sense 5’ 
ATAACAAGCTCCGTCCGTCT 3'; and GAPDH, sense 
5’ TGCACCACCAACTGCTTAGC 3' and anti-sense 5’ 
GGCATGGACTGTGGTCATGAG 3'. 
 
Western blot 
Cells were lysed in buffer containing 150 mM NaCl, 50 
mM Tris-HCl, pH 8.0, 1% Triton X-100, and 1 mM 
phenylmethylsulfonylfluoride, and total protein 
concentrations in extracts were determined with 
Advanced Protein Assay Reagent (Bio-Rad, Hercules, 
USA). Samples containing 40 μg protein were separated 
on 6 or 10% SDS-polyacrylamide gels under denaturing 
conditions and blotted onto polyvinylidene difluoride 
(Immobilon-P, Millipore, USA) for 120 min at 250 mA. 
Blots were blocked for 1 h at room temperature with 
0.15% Tween-20 and 5% non-fat milk in phosphate-
buffered saline, and probed overnight at 4 °C with 
monoclonal antibodies against rat cyclin D (Cell 
Signaling, USA, 1:500), and β-actin (Santa-Cruz, USA, 
1:3000). Membranes were then washed 4 times with 
Tween-20 in phosphate-buffered saline, and labeled for 30 
min at room temperature with a 1:3000 dilution of 
horseradish peroxidase-conjugated secondary antibody. 
Blots were visualized by the ECL method (Amersham, 
Buckinghamshire, UK).  
 
Statistical analysis 
Data were analyzed in the statistical program SPSS 15.0 
using non-parametric Mann-Whitney Room corporate 
law. p < 0.05 was considered statistically significant. 
 
Results 
 
Anti-proliferative activity of pentoxifylline 
Angiotensin II significantly induced (p < 0.0001) 
proliferation in VSMCs, as measured by the amount of 
MTT reduced to formazan, the formation of which is 
quantified by absorbance at 570 nm (Figure 1). The 
absorbance at 570 nm was 0.29 ± 0.02 in untreated cells, 
and 0.40 ± 0.05 in hormone-stimulated cells. 
Pentoxifylline significantly blocked (p < 0.05) this 
induction in a dose-dependent manner, and a dose of 0.5 
mM was sufficient to completely reverse the effect of 
angiotensin II, and reduce the absorbance to 0.29 ± 0.03 
(Figure 1). 
 
Effect of pentoxifylline on intracellular cAMP 
Angiotensin II reduced production of cAMP from 34.62 ± 
0.59 pmol/mg protein in untreated cells to 17.49 ± 3.30 
pmol/mg protein (p < 0.05). cAMP production was 
restored to 40.68 ± 0.49 and 41.50 ± 1.78 pmol/mg 
protein in the presence of 1.0 and 2.0 mM pentoxifylline, 
respectively. In addition, the same treatments increased . 
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Figure 1. Effect of pentoxifylline on VSMCs proliferation 
stimulated by angiotensin II. Pentoxifylline inhibits, in a 
dose-dependent manner, the proliferation of vascular 
smooth muscle cells stimulated with 1 μM angiotensin II. 
Data are mean ± S.E. *, p < 0.05 vs. control; **, p < 0.05 
vs. angiotensin II. 
 
 

 
 
Figure 2. Effect of pentoxifylline on production of cAMP 
in vascular smooth muscle cells exposed to 1 μM 
angiotensin II. Data are mean ± S.E. *, p < 0.05 vs. 
control; **, p < 0.05 vs. angiotensin II. 
 

 
Figure 3. The mRNA expression of cell cycle related proteins by RT-PCR. Angiotensin II upregulated cyclin D1 mRNA 
2-fold, but not cyclin E, cyclin A, CDK2, CDK4, and P27. Pretreatment with 0.1–2.0 mM pentoxifylline blocked this 
effect. I, control; II, angiotensin II; III-VI, 0.1 mM (III), 0.5 mM (IV), 1.0 mM (V), and 2.0 mM (VI) pentoxifylline. Data 
are mean ± S.E. *, p < 0.05 vs. control; **, p < 0.05 vs. angiotensin II. 
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Figure 4. Cyclin D1 protein expression by Western 
blotting. Angiotensin II (ANG) significantly stimulated 
protein expression of cyclin D1, an effect reversed by 
pentoxifylline (PTX) in a dose-dependent manner. I, 
control; II, angiotensin II; III-VI, 0.1 mM (III), 0.5 mM 
(IV), 1.0 mM (V), and 2.0 mM (VI) pentoxifylline. 
 
cAMP production in untreated cells to 54.82 ± 4.40 and  
67.68 ± 4.29 pmol/mg protein, respectively (p < 0.05) 
(Figure 2). 
 
Cell cycle regulation by pentoxifylline 
Angiotensin II significantly upregulated (p < 0.05) cyclin 
D1 mRNA 2-fold, but not cyclin E, cyclin A, CDK2, 
CDK4, or P27 (Figure 3). Pretreatment with 
pentoxifylline prevented this effect. Similarly, the drug 
blocked the ability of angiotensin II to increase the 
abundance cyclin D1 protein (Figure 4). 
 
Discussion 
 
Accelerated proliferation in vascular smooth muscle cells 
is an important factor in the development of hypertension 
[15]. The vasoactive hormone angiotensin II elicits such 
acceleration via several mechanisms. For instance, the 
mitogenic factors platelet-derived growth factor and 
transforming growth factor-β1 enhance angiotensin II 
activity [16,17]. The hormone also induces production of 
mitochondrial reactive oxygen species, which are 
associated with hypertension and atherosclerosis [18]. 
Moreover, angiotensin II stimulates NADPH oxidase 
[19], which contributes to cell growth and inflammation 
in atherosclerosis [20]. Finally, the hormone inhibits 
phosphate and tensin homolog to promote cell 
proliferation and migration [21] and upregulates 
extracellular signal-regulated kinase in response to high 
amounts of sodium [22].  
 
In contrast, intracellular cAMP maintains vascular smooth 
muscle cells in the quiescent state under physiological 
conditions and facilitates injury repair by inhibiting 
proliferation [13,23,24]. Thus, a specific inhibitor of PDE 
3 and 4 induces vascular relaxation and prevents 
proliferation by increasing cAMP [25,26]. Accordingly, 
we hypothesized that pentoxifylline, a drug that also 

increases intracellular cAMP, may block the ability of 
angiotensin II to stimulate vascular cell proliferation. 
Indeed, our data demonstrate that pentoxifylline 
attenuates proliferation in hormone-stimulated vascular 
smooth muscle cells via cAMP production. This finding is 
consistent with previous results [27,28]. 
 
In particular, cAMP blocks cell cycle progression by 
inhibiting cyclin D, and c-myc [23,29]. Cyclin D1 
regulates progression from the G1 to S phase [30,31]. In 
contrast, angiotensin II stimulates cyclin D1 and cyclin E 
and inhibits p27 [32,33], ultimately inducing 
proliferation. On the other hand, studies have 
demonstrated that pentoxifylline prevents platelet-derived 
growth factor from stimulating cyclin D1 expression in 
mesangial cells and airway smooth muscle cells [11,34]. 
In line with these data, we found pentoxifylline to 
attenuate expression of cyclin D1 after exposure to 
angiotensin II, but not other cell cycle proteins. 
 
In summary, pentoxifylline attenuates proliferation in 
angiotensin II-stimulated vascular smooth muscle cells by 
increasing cAMP and partially regulating the cell cycle. 
Similarly, the drug has been reported to inhibit 
proliferation in other cells, including astrocytes, 
fibroblasts, hepatic stellate cells, and mesangial cells [35-
38]. In vivo, the drug inhibits vascular proliferation in 
models of carotid arterial anastomosis model and 
angioplasty [39,40]. However, further studies are required 
to define pentoxifylline activity in the hypertensive vessel 
wall. Nevertheless, the data imply that administration of 
pentoxifylline may be an alternative strategy to prevent 
vascular proliferation and constriction in pathological 
conditions.  
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