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Abstract

Background/purpose: One of the most common childhood diseases is Urinary Tract Infection (UTI).
Without diagnosis and treatment, it can cause irreparable effects. Escherichia coli cause UTI in 75% of
cases. Unlike diarrheagenic E. coli has certain pathotypes, E. coli causing UTI, are not well known. For
further information, we considered pathogenicity determinants and epidemiology of uropathogenic E.
coli (UPEC) strains isolated from children with Urinary Tract Infection (UTI) to define distinct
pathotypes.
Methods: One hundred E. coli strains (50 UPEC and 50 commensal) isolated from children with UTI
were examined. Some virulence factors and specific genes were examined by PCR method. Genetic
diversity was evaluated by phylogenetic typing groups.
Results: Some pathogenicity determinants were more prevalent in UPEC strains rather than commensal
E. coli strains, significantly. There were PAI IICFT073, PAI II J96, PAI I536, PAI ICFT073, PAIII536,
PAI IV, gafD, focG, vat, usp, hlyD, sat, cnf1, picU, fliC(H7), kpsMTII, kpsMTIII. UPEC were mainly
found in phylogenetic typing groups B2 and D, while in commensal isolates, phylogenetic groups A and
D were the most common.
Conclusion: We need a simple pathotypes screening test which can be used either as or could be
beneficial to facilitate along with other experiments in establishing an UTI assessment. Unfortunately,
due to the high variation in pathogenicity determinants of UPEC strains, pathotypes could not be
determined using genotype and virulence factors. Knowledge of the molecular details of UPEC is
mainstay of successful strategies development for treatment of UTI and prevention of its subsequent
complications.

Keywords: Pathogenicity determinants, Uropathogenic E. coli (UPEC), Pathotypes, Children, Urinary tract infection
(UTI).

Accepted on March 14, 2018

Introduction
Urinary Tract Infection (UTI) is the most prevalent infectious
diseases, and very problematic worldwide [1]. Uropathogenic
E. coli (UPEC) which can colonize successfully in urinary tract
is the primary etiologic agents associated with UTI. UPEC
isolates express a wide range of virulence factors and specific
genes. In fact, UPEC can exceed some types of host cells that
comprise the stratified layers of the bladder urothelium, such as
differentiated superficial facet cells, less mature intermediate,

and basal epithelial cells. Invasion of host cell is facilitated
both the establishment and permanence of UPEC within the
urinary tract. Pathogenic extraintestinal E. coli isolates or
ExPEC (such as UPEC) and commensal E. coli typically differ
in phylogenetic group and virulent characteristics. According
to previous studies, pathogenic ExPEC isolates belong to
phylogenetic groups B2, and D. While, commensal E. coli
strains belong to groups A and B1. In addition, pathogenic
ExPEC isolates carry specialized pathogenic factors, i.e., traits
that confer pathogenic potential, which are uncommon between

ISSN 0970-938X
www.biomedres.info

Biomed Res 2018 Volume 29 Issue 10 2035

Biomedical Research 2018; 29 (10): 2035-2043



commensal isolates, UPEC strains and other E. coli strains are
involved in various extraintestinal infections. These strains are
distinguished from commensal strains by particular pathogenic
factors such as adherence characters, toxins genes, and iron
uptake systems. Bacterial adherence depending on the
assembly in fimbrial projecting or afimbrial aggregates. The
toxins related to ExPEC strains mostly display cytotoxic
necrotizing factor and hemolysin, contribute to destruction of
eukaryotic cells.

Siderophores give to the strains the advantage of obtaining iron
from the ambience to exist and reproduce. Co-expression of
virulence factors contributes to the host defense system defeat
and onset of infection. Pathogenicity-Associated Islands (PAI)
are codifying genes localized in distinctive area on the
bacterial chromosome. In addition, ExPEC strains carry some
virulence factors that are rarely between commensal E. coli
isolates. Some of these virulence factors which is encoded by
PAIs, preparing a mechanism for coordinated horizontal
factors, such as properties that confer the ability to transfer
pathogenic virulence genes. Hacker et al. first defined PAI
character as mobile genetic elements in the late 1980s. These
contain short direct repeats of fragments of DNA more than
>10 kb nearby to the tRNA genes and comprise insertion
sequences, integrases, and have a high percent G+C content
that varies from the host bacterial. Particular sets of virulence
factors are associated with UTI caused by E. coli. A variety of
virulence genes are contributed by bacterial strains operating
them by an individual pathogenesis process, are named a
“pathotypes.” Consideration of co-occurrence of potential UTI
virulence factors between different E. coli isolates from
commensal and urine collections provides documents for
defining multiple pathotypes of UPEC, but recent
understanding of critical genetic discrepancy to define the
pathotypes, is limited. Finding of E. coli extra genes involved
in uropathogenesis and consideration of their distribution will
further describe UPEC pathotypes and permit to a more
analysis of details of how these pathotypes might vary in how
they cause infection [2-6]. For further information, we
considered pathogenicity determinants and epidemiology of
Uropathogenic E. coli (UPEC) strains isolated from children
with Urinary tract Infection (UTI) to define distinct pathotypes.

Methods

UTI definition
Totally, 100 E. coli strains isolated from children presenting
symptomatic UTI of both sex and different ages (2-12 y old)
were hospitalized in the nephrology ward or were visited
outpatient in Mofid Children Hospital, Tehran, Iran. Isolated E.
coli colonies were recognized by standard bacteriological
procedures. Commensal E. coli strains, including the well-
characterized strains MG1655 and HS were used as controls.
All distinct colonies were recognized morphologically and
were stored for molecular examination, as described previously
by Plos and Foxman. Classification of phylogenetic grouping
of the E. coli strains was performed by PCR-based method

using a combination of three DNA markers (chuA, yjaA,
TspE4.C2) [7,8].

Detection of E. coli virulence determinants
All isolates were tested by PCR method for the existence of 31
bacterial genes related to UTI that as following as:
phylogenetic typing groups genes; chuA, yjaA, TspE4.C2,
adhesions groups; afa, bmaE, fimH, gafD, focG; protectin
related genes; kpsMT (K1), kpsMTII, kpsMTIII, rfc (O4 LPS),
common toxins related to UPEC; vat, usp, cvaC, hlyD, cdtB,
sat, cnf1, picU and, different PAI; PAI IICFT073, PAI II536,
PAI III536, PAI I536, PAI IV536, PAI ICFT073, PAI I J96, PAIII
J96, Miscellaneous genes; fliC (H7) ibeA, ompT. These
pathogenic factors were part of a large set of virulence genes
described previously by Johnson et al. Boiled whole-cell
lysates 400 ml were used as DNA template and amplification
was performed in a 25 µl reaction mixture containing 4 mM
MgCl2, 2.5 µl reaction buffer 10X, 2.5 U iTaq TM DNA
polymerase (5 U/µl), 0.5 mM each primer and 5 µl DNA
template. Reactions were performed in a Gene PCR System
(Eppendorff). A reaction mixture without a DNA template was
used as a negative control. Isolates producing a clear zone of
hemolysis around colonies on sheep-blood agar, considered to
be positive for hemolysin production [2,9].

Statistics
Continuous variables were expressed as mean ± Standard
Deviation (SD). Discrete variables were reported as frequency
and percentage. Chi square test and Fisher's exact test were
used to access the relation between quantities' variables. For all
statistical analyses, a p-value of <0.05 was considered to be
significant. Statistical analysis was conducted using the SPSS
version 21.

Results

Characteristics of patients
Total of 100 E. coli isolates were analysed. Of these, 50 were
collected from midstream clean catch urine and 50 isolated
from stool of the same patients who were in the nephrology
ward in Mofid Children Hospital in Tehran.

Phylogenetic typing group distribution
The distribution of commensal E. coli isolates and UPEC
isolates among the four phylogenetic groups is as following:
Of the 50 commensal E. coli isolates, 44% fell into group A,
16% into B2, 32% into D, and UPEC isolates fell into group D,
54% into B2, 8% into A.

Pathogenicity island genes distribution
Distribution PAI genes, such as PAI ICFT073 (74 vs. 26%), PAI
IICFT073 (38 vs. 14%), PAI I536 (36 vs. 6%), PAI IV536 (86
vs. 42%), PAI II J96 (30 vs. 10%) were more frequent virulence
markers in UPEC isolates than commensal E. coli and PAI
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II536 (22 vs. 4%), PAI III536 (6 vs. 0%), PAI I J96 (4 vs. 0%)
markers was almost similar in UPEC isolates and commensal
E. coli (Table 1).

Adhesion genes distribution
Distribution of adhesion genes, such as bmaE (16 vs. 6%),
gafD (20 vs. 2%), focG (22 vs. 6%) were more frequent
virulence markers in UPEC than commensal E. coli and afa (6
vs. 10%), fimH (92 vs. 98%) markers were almost similar in
both isolates (Table 2).

Toxin related genes distribution
Distribution of toxin genes, such as vat (96 vs. 4%), usp (54 vs.
6%), hlyD (26 vs. 2%), cdtB (18 vs. 10%), sat (44 vs. 8%), cnf1
(26 vs. 0%), picU (42 vs. 2%) were more frequent virulence
markers in UPEC isolates than commensal E. coli. cvaC (20 vs.
66%) was most frequent marker in commensal E. coli (Table
3).

Miscellaneous genes distribution
Distribution of miscellaneous genes, such as fliC (H7(26 vs.
10%)), ompT (62 vs. 58%) were more frequent virulence
factors in UPEC than commensal E. coli, and ibeA (14 vs.
26%) was almost similar in both of them (Table 4).

Protectins genes distribution
Distribution of protectins genes, such as kpsMTII (70 vs. 46%)
was more frequent virulence gene in UPEC rather than
commensal E. coli. The prevalence of kpsMTI (K1) (46 vs.
54%), kpsMTIII (14 vs. 2%), rfc (O4 LPS) (6 vs. 2%), were
almost similar in both of them (Table 5).

Table 1. PAI distribution between commensal E. coli and UPEC in
children with UTI in Iran.

PAI genes Commensal E.
coli

UPEC p-value

PAI III 536 0 (0%) 3 (6%) 0.324

PAI IV 536 21 (42%) 43 (86%) <0.001

PAI II CFTO73 7 (14%) 19 (38%) <0.001

PAI I 536 3 (6%) 18 (36%) <0.001

PAI II 536 2 (4%) 11 (22%) <0.001

PAI I J96 0 (0%) 2 (4%) 0.329

PAI II J96 5 (10%) 15 (30%) 0.001

PAI I CFTO73 13 (26%) 37 (74%) <0.001

Table 2. Adhesion genes distribution between commensal E. coli and
UPEC in children with UTI in Iran.

Adhesion genes Commensal E. coli UPEC p-value

afa 5 (10%) 3 (6%) 0.298

bma E 3 (6%) 8 (16%) 0.007

fim H 49 (98%) 46 (92%) 0.534

gaf D 1 (2%) 10 (20%) <0.001

foc G 3 (6%) 11 (22.0) 0.006

Table 3. Toxin related genes distribution between commensal E. coli
and UPEC in children with UTI in Iran.

Toxin genes Commensal E. coli UPEC p-value

cdtB 5 (10%) 9 (18%) 0.194

hlyD 1 (2%) 13 (26%) 0.001

cnf1 0 (0%) 13 (26%) <0.001

cva C 33 (66%) 10 (20%) <0.001

usp 3 (6%) 27 (54%) <0.001

vat 2 (4%) 48 (96%) <0.001

sat 4 (8%) 22 (44%) <0.001

picU 1 (2%) 21 (42%) <0.001

Table 4. Miscellaneous genes distribution between UPEC and
commensal E. coli in children with UTI in Iran.

Miscellaneous genes Commensal E. coli UPEC p-value

fliC H 5 (10%) 13 (26%) 0.020

ibeA 13 (26%) 7 (14%) 0.325

ompT 29 (58%) 31 (62%) 0.895

Table 5. Protectins genes distribution between commensal E. coli and
UPEC in children with UTI in Iran.

Protectins genes Commensal E. coli UPEC p-value

kps MTI 27 (54%) 23 (46%) 0.707

kps MT II 23 (46%) 35 (70%) <0.001

kps MT III 1 (2%) 7 (14%) 0.083

rfc 1 (2%) 3 (6%) 0.700

Discussion
It is thought to the pathogenic E. coli strains are related to the
presence of virulence factors. According to products called
virulence factors, E. coli bacteria adhere selectively to the
uroepithelial mucosa, promote colonization and persist in the
urinary tract, induce a local inflammatory response, and
sometimes promote tissue destruction. The result of a complex
combination of special attributes of the E. coli causes to
movement of a bacterium from the intestinal tract to the kidney
and bladder. Our goal in this study was to pathogenicity
determinants and epidemiology of Uropathogenic E. coli
(UPEC) strains isolated from children with UTI to define
distinct pathotypes. The phylogenetic groups’ distribution
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varies considerably among UPEC and commensal E. coli
isolates [10].

Group A were the most prevalent phylogenetic group (41%)
between the commensal E. coli, and that group B2 isolates
were the least whereas in UPEC isolates, group B2 being the
most prevalent (54%) and group B1 being least prevalent (4%).
Our results were similar with those reported by Duriez et al.
who detected that group B2 was seldom E. coli isolates (11%),
whereas groups A and B1 were the most common (40% and
34%, respectively) [11].

Also, according to studies of Duriez et al. and Picard et al.
group B2 has been reported with different prevalence in
commensal E. coli isolates between 2-19% [11-14].

Some studies detected groups A and D in enteroaggregative E.
coli. It is proven that other pathotypes such as
enteropathogenice E. coli (EPEC) and enterotoxigeneic E. coli
(ETEC) belong to phylogenetic groups A and B2 [15-19].

As the same like as Johnson study, we also identified that the
phylogenetic group B2 were dominant in urine isolates. One of
the main reasons due to being more virulence factors in UPEC
compared to other groups [20].

A significant difference on phylogenetic groups B2 and D
distribution between UPEC and commensal E. coli due to some
reasons. Being additional alternative route for causing disease
and infection and being specificity of bacterial pathogenesis
are the most reason on these results. ExPEC especially UPEC
mainly belong to the phylogenetic group B2 and D groups
while commensal E. coli mostly belong to group A and B1
[21-27].

As we mentioned above, the most dominant phylogenetic
groups in UPEC was B2 or D. Also, we identified phylogenetic
group D rather than A in commensal E. coli. Previous studies
have demonstrated that human health are potentially affected
by UPEC strains, especially group B2 with virulence genes
profiles, which in the face with a high proportion of
commensal isolates existence in intestinal, these genes could
be transferred them [28,29].

In contrast in Duriez study, it was recognized that group B was
the most prevalent between both commensal and UPEC
isolates, and recommended that the detected differences with
respect to previous results could be impressed by the
population and age selected for study. In the present research,
children were 2-12 y old; therefore, the discrepancy between
the two studies cannot be illustrated by the age selected. Duriez
et al. studied females aged between 18-39 y old, which is an
age range with a high occurrence of the proportion of UPEC
asymptomatic carriers. It was interesting that the mean number
of PAIs in isolates related to groups B2 and A was alike in both
UPEC and commensal E. coli. In comparison, isolates related
to group D significantly had PAIs rather than intestinal flora,
but was non-significant between isolates related to group B1.
In based on Duriez et al.’s study, they compared virulence
factors and phylogenetic groups between commensal strains
and recognized that commensal isolates related to groups A,

B1 and D. They exposed fewer virulence factors rather than
ExPEC strains [11].

Actually, that commensal E. coli related to group B2 are less
virulent than strains isolated from clinical specimens, as
observed in this study and previous studies, reinforce the
hypothesis that it is mainly the most virulent isolates related to
these groups in intestinal tract, can produce UTI and other
infections. Some of virulence factor genes locate on genetic
elements called on Pathogenicity Islands (PAI) in the vicinity
of tRNA genes. In UPEC these islands are detected and have
proven their role [30,31].

Two multiplex PCR for detection of 8 pathogenesis- related
PAI in this study were used. The prevalence of PAI in UPEC
was% 89 compared to commensal E. coli 38%. There are
evidences that the intestinal environment have E. coli strains,
mainly belong to B2 group which contain large numbers of
PAI. PAI IV536 island pathogenesis has been seen the most
common PAI in both groups. This PAI is detected a lot in the
Enterobacteriaceae family [18,32-36].

We were observed PAI IV536 (also called HPI) 19% in
commensal E. coli isolates compared to 43% in UPEC isolates.
Being high prevalence of PAI IV536 in isolates is led to the
hypothesis that HPI is a structural island to be assumed as a
pathogenesis island [37,38].

However, in-vivo experiments showed that HPI had important
role in ExPEC strains. Similar with Middendorf et al. study, the
high frequency of PAI IV536 could be explained by PAI
stability in E. coli [39].

Based on Bingen-Bidois study in 2002 on urosepsis producing
E. coli, the frequency of PAIs was reported as follows: PAI
IV536 (92%), PAI IIJ96 (24%), PAI ICFT073 (19%), PAI I536
(1%), but neither PAI Ij96 nor PAI II536 was observed, and PAI
IICFT073 studied PAI III536 were not studied. Results were
showed the high frequency of PAI IV536 but low frequency of
PAI I536 (19% vs. 73%), and higher frequency of PAI IIJ96
(24%) compare to PAI ICFT073 (19%) [40]. They suggested
that the role of PAI II536 and PAI IJ96 in urosepsis
pathogenesis may not be important, and no difference was
identified in distribution rate of PAI II536 among E. coli
isolates from patients with urosepsis or pyelonephritis.
Dobrindt et al. reported that 64.5% of UPEC isolates and
39.3% of non-pathogenic E. coli had PAI III536 and concluded
that PAI II536 was more common than PAI I536, PAI III536
[41]. Middendorf et al. reported that PAI II536 and PAI III536
were very unstable and hence were easily lost and could be
explained the difference between our findings and the findings
of Dobrindt [39,41].

Similar with the other studies, PAIs numbers in UPEC and
commensal isolates showed that the average number of PAI in
isolates belonging B2 and A groups were the same. PAIs
numbers in D group were significantly higher in commensal E.
coli, but it in the case of B1 group was not significant. Similar
PAI combination was seen in many isolates that had the same
number of PAIs regardless of phylogenetic groups and their
origin. Although, PAI acquisition is not a random phenomenon
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and is carried out in a planned mechanism. It is proven that PAI
IV536 initially gains on chromosome and establishes to stable
condition.

PAI IV536 is often seen alone in strains except group B2 but
sometimes there are exceptions, and it also is detected along
with PAI ICFT073. PAI IICFT073 may be the third island,
which gained followed by PAI IIJ96 and PAI I536. The PAI
II536 and III536 in the final stage earn. This fact explains why
they are so unusual and can be seen in highly virulent strains.
PAI IIJ96 and PAI IICFT073 compete on goal to replace on
tRNAphe. The results indicate that PAI IICFT073 have more
affiliation compare to PAI IIJ96 for the target. However, when
commensal populations of E. coli and ExPEC consider based
on their phylogenetic groups reveals more differences. Because
E. coli isolated from feces mainly belong to B1 and A groups
while the population of ExPEC often belong to B2 group and
has a lot number of virulence factors. Therefore, it is unclear
whether all E. coli isolated from the intestinal tract of healthy
people in a specific time, regardless of phylogenetic groups
become commensal or just isolates belonging to groups A and
B1 are commensal.

Similarly, we don’t know in the case of E. coli belongs to A
and B1 groups isolated from patients with UTI should be
considered as natural pathogens or commensal E. coli in a host
with healthy immune system. These findings suggest that
intestinal flora may act as a reservoir and can stimulate UTI by
means of commensal E. coli with the B2 phylogenetic group.

The prevalence of afa gene in UPEC and commensal E. coli
was 6%, 10% respectively. Gene prevalence in different studies
was 2-11% due to the low prevalence of this gene in the E. coli
strains [42-46]. fimH is common in E. coli strains. In fact, most
clinical isolates both virulent and non-virulent can produce
type 1 fimbriae. In epidemiological studies, there were no
evidence of the relationship between type 1 fimbriae and
severity of the infection. Several studies in experimental
models indicated that type 1 fimbriae could have an effective
role in the stability of E. coli in the urinary tract. Renovation of
fimH-1 adhesion greatly reduces UPEC ability to colonize the
urinary tract in human volunteers and mice. In this study, fimH
prevalence has been reported 92% in UPEC, and 98% in
commensal E. coli [47-49].

It is noteworthy that fimH adhesion in UPEC plays important
role to connect and invade host cells and produce intracellular
bacterial apartments (biofilm formation) [48]. According to
genotyping study, fimH almost more than 90% of UPEC
strains and pathogenic E. coli in birds, was reported [50].

In Johnson et al.’s study, gafD detected more than 20% of E.
coli isolates with other virulence factors such as sfaS, focG,
afa/dra, bmaE, gafD, cnf1, cdtB, cvaC, ibeA and most was
frequently in relationship with phylogenetic group B2 which
was agreement with our study. In this study, focG prevalence
among UPEC, commensal E. coli was 22%, 6%, respectively,
which was agreement with Johnsons findings [29].

In this study, 20% of strains belonged to phylogenetic group
B2 gene had hlyD gene, while only in 4% of group A and 2%

of B1 and 10% of group D, hlyD gene was detected. Forty two
percent of UPEC isolates had hemolytic activity and 26% of
gene carried hlyD. The reason due to be the low percentage of
hlyD gene carriers strains (10%) belonged to group B2 [24].

We identified cvaC 20% and 66% among UPEC and
commensal E. coli, respectively. Low prevalence of cvaC in
UPEC strains suggests that this gene may be placed on non-
ColV plasmid or PAI such as pTJ100. In Johnson study, based
on bird pathogenic E. coli examination, they reported hlyA
41%, cnf1 16%, cdtB 8%, but about 28% of UPEC had cnf1.
We reported hlyD (26%, 2%), cnf1 (26%, 0%), cdtB (18%,
10%) in UPEC and commensal E. coli, respectively. This
disagreement is caused by differences in study population
[25,41,51].

By means of PCR method, fimH, kpsM, hlyD, usp, cnf1, afa
were detected in UPEC strains, 92%, 46%, 26%, 54%, 26%,
6%, respectively. In this study, the prevalence of fimH in
UPEC strains was high. These results demonstrate that type 1
fimbriae are important virulence factor. The type 1 fimbriae
have been shown to enhance inflammation and played an
important role in the pathogenesis of ascending UTIs.

Connell et al. reported that infected mice by strains 01: K1: H7
with present type 1 fimbriae had more stimulation of
neutrophil cells rather than infected mice by type 1 negative
strains. Our results showed that fimH was associated to P and S
fimbriae in UPEC strains [52-56].

In a study conducted in Japan, usp gene was detected in 80%
of 195 strains isolated from cystitis, and 93% of the 76 strains
isolated from pyelonephritis [57]. According to different
studies, usp has often been observed associated with
pyelonephritis rather than cystitis. In a study conducted by
Kanamaru, usp was identified in 22.2% of isolates. The
difference between results due to differences in studied
population (women) or between clones of bacterial isolated
from women in Brazil and Japan [58,59].

usp gene is homologous with zonula occludens in Vibrio
cholera. In a study conducted in Japan, usp was diagnosed in
54% of E. coli strains isolated from healthy subjects stool
samples, 80% isolated from cystitis and 93% of strains
pertaining to pyelonephritis [57].

Most of UPEC strains have capsule group 2 (K1, K5) are
coded by the operon kps.Capsules in UPEC associated with
pyelonephritis is very common [60]. In this study, UPEC
strains contained approximately 70% kpsMTII. All isolates was
observed in relation to other virulence factors in UPEC
including kpsMTII and hlyA [29,58].

In first time cdt producing E. coli were observed in relation to
children with enteritis [61]. In other studies, cdt gene was
observed in strains isolated from urosepsis E. coli and fecal E.
coli and in patients with various symptoms such as diarrhea,
encephalopathy [29,62].

cdt gene cause irreversible inhibition of cell cycle at the G2/M
and produce single nuclear giant cells. The results suggest that
cystitis can cause cdtB negative strains but this E. coli is less
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virulent compare to strains cause pyelonephritis, urosepsis and
diarrhea.

Specifically, we reported 96% vat in UPEC isolates compared
to 4% in commensal E. coli strains. In Tiba et al.’s study, 39%
of the isolates in bird’s pathogen (APEC) revealed vat that
these mainly related in the phylogenetic group D. In
commensal strains and UPEC, pic was more common in
phylogenetic groups B2. sat (44%) was more common in
related to UPEC isolates and also, picU (42%) was observed in
UPEC more than commensal E. coli, too [57]. Agreement with
Timothy and Germon studies, ibeA observed in E. coli
pathogens related to UTI and along with other numerous
virulence factors more naturally associated to this infection
[63,64].

In another study, ibeA was reported in about 26% of
pathogenic E. coli strains isolated from chickens, and was not
observed in non-pathogenic strains. Also, ibeA in APEC, E.
coli isolated from vagina, and infant meningitis was observed
(26%), (32%), (33-40%), respectively. So, we concluded that
this factor significantly associated with pathogenic strains
[17,64,65].

Compared with the study of Rodriguez-Siek, we reported 26%
fliC (H7) in UPEC but they reported 4.8% in APEC. The
difference between results due to differences in studied
population. Similar to Zhao et al. ompT was reported 68% in
our study [50].

Based on Rodriguez-Siek study in 2005, most of UPEC
causing UTI in human presented capsules kpsMT (K1),
kpsMTII genes. These genes identified rarely in APEC. So it
has been concluded that these genes closely related to ExPEC
strains such as UPEC. Specifically, capsular antigen K1 often
has been observed in UPEC [65-67].

However, significant relationship between these factors and
producing UTI cause this hypothesis that extraintestinal
movement of bacteria after acquisition of some virulence factor
and ability to ascending urinary tract is very important to cause
disease. It is proven that these virulence factors present in
strains cause meningitis rather than other types of E. coli [63].

Similar to Bert, kpsMTII have been observed significantly
more compare with the other capsular genes. Even, kpsMT III
and rfc (O4LPS) have been reported less than 10% of the cases.
In Zhao et al.’s reports, kpsMT (K1) was involved in the
synthesis of capsules in 45% APEC and UPEC [50,68].

The present study provides molecular and epidemiological
information about virulence factor genes found in two groups
of E. coli. It is necessary to have a simple pathotypes screening
test which can be beneficial to facilitate along with other
experiments in establishing an UTI assessment. Unfortunately,
due to the high variation in pathogenicity determinants of
UPEC strains, pathotypes could not be determined using
pathogenicity determinants. Knowledge of the molecular
details of UPEC is mainstay of successful strategies
development for treatment of UTI and prevention of its
subsequent complications.
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