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Abstract

This study investigated the influence of ultra-thin veneer materials and its thickness on their
biomechanical behavior using the 3D finite element method to find out which of all these models have a
better performance. The distribution of stresses in the models was studied when composite resin and
feldspathic porcelain were used in ultra-thin veneers with thickness of 0.2 mm and 0.3 mm under static
loads. The results showed that the use of composite resin in the preparation of veneer of 0.2 mm in
thickness reduces the maximum stresses by 65.24% at least compared to feldspathic porcelain, and it
reduces the maximum stresses by 56.28% at least compared to feldspathic porcelain in veneer with
thickness of 0.3 mm. The results showed also that the use of composite resin ultra-thin veneer with
thickness of 0.2 mm reduces the maximum stresses by 49.48% at least compared to veneer with
thickness of 0.3 mm, and the using of feldspathic porcelain ultra-thin veneer with thickness of 0.2 mm
reduces the maximum stresses by 36.46% at least compared to veneer with thickness of 0.3 mm.
Therefore, it is recommended to use composite resin ultra-thin veneer with thickness of 0.2 mm as it
reduces induced stresses, which improves the stability and durability of veneers and prolong its lifespan.
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Introduction
The development of dental restorations is constantly
increasing, which is associated with an increasing interest for
obtaining beautifully restored teeth using cosmetic veneers to
restore and beautify faded, deformed or worn teeth, especially
those that located in the visible areas of the mouth [1].
Biocompatible porcelain and composite resins are the most
widely applied materials used in dentistry as restoration and
veneer materials, regards it has characteristics similar to those
of the dentin [2], and has a similar flexible module and strength
when it used for direct or indirect restorations [3]. As for
ceramic materials, it has a modulus of elasticity similar to that
of the enamel layer [4,5].

The wrong choice of cosmetic veneer material and its thickness
is one of the most important factors leading to failure. In the
reports of success rates of veneer designs, there was a success
rate ranging from 72%-85% for two veneer designs (palatal
chamfer and butt-joint designs) in a five-year survey [6]. The
most failure cases may be attributed to the veneer fracture and
the adhesion weakness on the tooth surface [7]. As reported,
the incisor and cervical region were the most likely to fail
[8,9]. Thus, the veneer designs are the most important factors

affecting long-term clinical success. In order to determine the
success or failure rate of veneers, the stress distribution
analysis should be performed using the 3D finite element
method, which is the most efficient and effective tool in such
cases [10-12]. The importance of this research is mainly to
maintain as much tooth structure as possible by using ultra-thin
cosmetic veneers, and to overcome the majority of failure cases
that may occur as a result of the wrong selection of ultra-thin
veneer design by studying the stress distribution in cosmetic
veneers using two different materials (composite resin and
feldspathic porcelain) and different preparation thicknesses
(0.2 mm and 0.3 mm) for these veneers, which is affecting the
biochemical behavior of teeth restored with veneers. Therefore,
the aim of this research is to find out the veneer material and
thickness that have the best performance to be used in the
preparation of dental veneers.

Materials and Methods

Modeling and Meshing
3D models were established using Autodesk® InventorTM
software for incisor tooth structure, including the enamel with
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a thickness of 0.3 mm and the dentin. The tooth root was also
surrounded by the periodontal ligament with a thickness of 0.2
mm. A section of the upper jawbone was then established,
including cancellous bone surrounded by cortical bone with a
thickness of 2 mm. Then the butt-joint models with a thickness
of 0.2 mm and a thickness of 0.3 mm were created for the
various cosmetic veneers to be studied as shown in Figure 1.
All these models were then exported to the ANSYSTM
software to perform the finite element analysis (FEA).

Figure 1. CAD models: (a) Butt-joint veneer model, (b) Tooth
structure and (c) Assembled model.

Due to the complexity of the geometry of the studied models,
the mesh with tetrahedral elements was used. The mesh was
refined and accepted when the relative errors were less than
1% [13]. The results of convergence analysis are shown in
Table 1 and Figure 2. The mesh of studied models before and
after refinement is shown in Figure 3.

Figure 2. Mesh sensitivity results in terms of the maximum von Mises
stress.

Table 1. Total number of elements and nodes for each component.

Components 0.2 mm thick 0.3 mm thick

Elements Nodes Elements Nodes

Periodontal ligament 962 1970 962 1970

Dentin 2669 4521 2747 4644

Enamel 12530 21426 573 1291

Veneer 863 1822 1284 2597

Cortical bone 3489 6528 3489 6528

Cancellous bone 4357 7404 4357 7404

Boundary conditions
A load of 10 N with the 125° (protrusion) and 60° (tearing)
angles with the tooth’s longitudinal axis were applied at the
palatal surface of the veneer as shown in Figure 3 [14]. All
contact conditions established in this FE analysis are
considered bonded [15-21]. The FEM model is fixed at the top
surface of the maxilla as shown in Figure 3.

Figure 3. 3D Mesh (a) Before refining (b) After refining and (c)
Boundary conditions.

Material properties
All materials of the studied components were considered to be
linear elastic isotropic, taking into consideration that isotropic
materials show the same mechanical properties regardless of
loading direction [22]. The reference values are taken from
previous studies [23-27]. Table 2 shows a summary of the
mechanical properties used in this study.

Table 2. Mechanical properties of the materials used in the study.

Material Elastic modulus E [GPa] Poisson’s ratio ν

Periodontal ligament 0.069 0.45

Dentin 18.6 0.31

Enamel 80 0.33

Composite resin 14.74 0.33

Feldspathic porcelain 70 0.19

Cortical bone 13.7 0.3

Cancellous bone 1.37 0.3

Results and Discussion
The data obtained from the finite element analysis can be
presented in a stress distribution map with a color scale, which
makes it possible to directly compare the magnitude and
distribution of stress of various models. These results
demonstrate the relationship between the stress distribution in
the veneer-tooth structure system and the materials of the
veneer models (Figures 4 and 5). One of the theories most used
to determine the stress is von Mises theory [28]. This theory
has been applied to determine the stress distribution of the
models. From the FE analysis, the numerical results of
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maximum von Mises stress obtained from different models
have been tabulated in Table 3.

Table 3. Maximum von Mises stress according to the veneer material
and thickness.

Von Mises Stress [MPa]

Component 0.2 mm thick 0.3 mm thick

125° 60° 125° 60°

Composite resin 164.76 160.82 321.47 326.13

Feldspathic porcelain 474.03 465.79 731.19 746.07

Figure 4. Distribution of the von Mises stress in the veneer with a
thickness of 0.2 mm.

Figure 5. Distribution of the von Mises stress in the veneer with a
thickness of 0.3 mm.

It could be noted from Figures 4 and 5 that the stress
distribution does not differ according to the applied forces or
the material used, but the stress distribution varies according to
the thickness of the cosmetic veneer. Maximum stresses are
concentrated in the lateral edge of the veneer with a thickness
of 0.2 mm. For veneer with a thickness of 0.3 mm, maximum
stress is concentrated around the incisal area.

Returning to the results presented in Table 3, it is noted that the
use of composite resin material for the preparation of cosmetic
veneer with a thickness of 0.2 mm reduces the maximum stress
by at least 65.24% compared with feldspathic porcelain
material, while its use of the preparation of veneer with a
thickness of 0.3 mm reduces the maximum stress by at least
56.28% compared with feldspathic porcelain material.

These results can be explained by the fact that the use of
composite resin material can distribute the applied loads more
homogeneous than the other material, which is affecting the
reduction of stress concentration in the veneer-tooth structure
system. Therefore, the use of this material for the preparation
of ultra-thin veneer could improve the stability and durability
of the system and prolong its lifespan.

From Table 3, it is noted also that the use of the composite
resin veneer with a thickness of 0.2 mm reduces the maximum
stress by at least 49.48% compared with the veneer with a
thickness of 0.3 mm, while its use of the preparation of
feldspathic porcelain veneers reduces the maximum stress by at
least 36.46% compared with the veneer with a thickness of 0.3
mm.

These results can be explained by the fact that the use of ultra-
thin veneer with a thickness of 0.2 mm maintains the thickness
of 0.1 mm of the tooth enamel, which leads to a greater
reduction of the induced stress compared to the use of the
veneer with a thickness of 0.3 mm that lead to remove the
entire enamel and adhere to the dentin, that could increase the
values of the induced stress in dental veneer.

Although there is no similar study of the influence of ultra-thin
veneer materials and its thickness on their biomechanical
behavior, but there are many studies have indicated that the
stresses concentrated in the incisal area [14,29], which was in
agreement with the presented results in this study. Li et al.
studied the effect of veneer materials with the thickness of 0.5
mm on its biomechanical behavior using the finite element
analysis [25]. They found that the use of the composite resin
model showed a more homogeneous behavior than porcelain
model. This result was in agreement with the presented results
in this study. Ge et al. found in their in vitro study that the
porcelain veneer adhered to the enamel performs better than
the one that adhered to the dentin, and this result is fully
consistent with the results of this study [30]. Their results
showing a good agreement with the results in this study.

Conclusion
The use of composite resin material in the preparation of ultra-
thin veneer reduces the maximum stress induced in the model,
whatever the thickness used in its preparation. The use of ultra-
thin veneer with a thickness of 0.2 mm reduces the maximum
stress induced in the model, whatever the material used in its
preparation. Based on these results, it is not recommended to
use feldspathic porcelain in the preparation of ultra-thin veneer,
but it is recommended to use the composite resin. It is also not
recommended to use the veneer with a thickness of 0.3 mm,
but it is recommended to use ultra-thin veneer with a thickness
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of 0.2 mm, which improves the stability and durability of the
cosmetic restoration and prolong its lifespan.
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