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ABSTRACT 
 
RNA interference (RNAi) is a post-transcriptional pathway in which double-stranded RNA (dsRNA) triggers 
the degradation of complementary mRNA in the cytoplasm of eukaryotic cells. In plants and in some 
animals, including Caenorhabditis elegans, initiation of RNAi in one cell can lead to sequence-specific RNA 
silencing in another cell, a phenomenon referred to as non-cell-autonomous RNAi. Until recently, this 
phenomenon had not been observed in mammalian cells. Here, we review emerging data demonstrating that 
non-cell-autonomous RNAi occurs in cultured mammalian cells. We discuss possible mechanisms for the 
transfer of RNAi between mammalian cells and highlight the implications of this phenomenon for the 
development of in vivo cell-based RNAi delivery.  
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INTRODUCTION 
 
RNA interference (RNAi) is a post-transcriptional 
pathway in which double-stranded RNA (dsRNA) triggers 
the degradation of complementary mRNA in the 
cytoplasm of eukaryotic cells (Fire et al, 1998). In this 
pathway, the ribonuclease III enzyme Dicer cleaves long 
dsRNA (Bernstein et al, 2001) into ~21-25-nucleotide (nt) 
dsRNA duplexes (Hammond et al, 2000; Zamore et al, 
2000) referred to as short hairpin RNAs (shRNAs), 
microRNAs (miRNAs) or short interfering RNAs 
(siRNAs). (See Figure 1 for more detail regarding when 
each term is used). The resulting dsRNA duplex is 
incorporated into the RNA-induced silencing complex 
(RISC) (Hammond et al, 2000), where helicase enzymes 
unwind the duplex and the catalytic protein Argonaute 2 
(Ago2) cleaves the sense strand of RNA (Matranga et al, 
2005). Guided by the antisense strand of RNA (Martinez 
et al, 2002), the activated RISC targets complementary 

mRNAs in the cytoplasm for translational repression, 
mRNA degradation, or cleavage by Ago2 (Liu et al, 2004; 
Rand et al, 2004; reviewed in Fabian et al, 2010). 
 
In plants and in some animals, including Caenorhabditis 
elegans, RNAi can spread intercellularly (reviewed in 
Mlotshwa et al, 2002; Voinnet, 2005; Jose and Hunter, 
2007; Dinger et al, 2008; Kalantidis et al, 2008; Chitwood 
and Timmermans, 2010), a phenomenon referred to as 
non-cell-autonomous RNAi. In plants, RNAi spreads 
locally from cell-to-cell through plasmodesmata (Himber 
et al, 2003), which connect the cytosols of adjacent plant 
cells. RNAi also spreads systemically through the phloem 
system of the plant (Voinnet et al, 1998; Himber et al, 
2003). In C. elegans, injection of dsRNA into the 
pseudocoelomic body cavity or gonad triggers RNAi in 
somatic tissues (Fire et al, 1998). Additionally, feeding C. 
elegans with dsRNA or dsRNA-expressing bacteria 
induces systemic RNAi (Timmons and Fire, 1998). 



457 

 

©The Authors | Journal of RNAi and Gene Silencing | 2011 | Vol 7 | 456-463 | OPEN ACCESS 

Despite numerous reports of non-cell-autonomous RNAi 
in plants and in some animals, until recently, this 
phenomenon had not been observed in mammalian cells. 
Here, we review emerging data demonstrating the transfer 
of RNAi between cultured mammalian cells by both cell 
contact-independent and cell contact-dependent transfer 
mechanisms. The existence of non-cell-autonomous RNAi 
in mammalian cells has important implications for the 
development of in vivo cell-based RNAi delivery. 
 
 

 

 
Figure 1. The RNAi pathway. Dicer cleaves long dsRNA in the 
form of pre-shRNA, pre-miRNA, or Dicer-substrate siRNA into 
~21–25-nt dsRNA duplexes (Hammond et al, 2000; Zamore et al, 
2000), referred to as shRNAs, miRNAs, or siRNAs, respectively, 
to initiate RNAi. Most shRNAs and siRNAs have exact 
complementarity with their target mRNAs and result in mRNA 
cleavage by Ago2. Most miRNAs bind to the 3’ untranslated 
region of their target mRNAs with imperfect complementarity, 
resulting in translational repression (reviewed in He and Hannon, 
2004) or deadenylation and target mRNA degradation (reviewed 
in Fabian et al, 2010). Alternatively, ~21-25nt siRNAs can be 
directly transfected into the cytoplasm of cells to initiate RNAi. 
Note that the term siRNA can also be used more generally to 
describe any of the forms of ~21-25nt dsRNA duplexes that 
initiate RNAi. 
 
 
 
MECHANISMS OF CELL CONTACT INDEPENDENT 
NON-CELL-AUTONOMOUS RNAi  
 
Microvesicles 
Microvesicles (MVs) are plasma membrane fragments 
varying in size (0.1-1μm in diameter), shape, and 
composition that are shed from a variety of healthy or 
damaged cells during plasma membrane blebbing. MVs 
are thought to mediate intercellular communication by 
delivering proteins, RNAs, and other cellular cargos from 
one cell to another (reviewed in Ratajczak et al, 2006b; 
Cocucci et al, 2009). In agreement, Ratajczak et al (2006a) 
showed that MVs derived from embryonic stem cells 
(ESCMVs) delivered embryonic stem cell-derived mRNA 
into hematopoietic progenitor cells (HPCs), resulting in 
target protein production and reprogramming of the HPCs. 

Furthermore, MVs derived from a variety of cell types 
contain miRNAs (Hunter et al, 2008; Yuan et al, 2009; 
Collino et al, 2010), suggesting that MVs may shuttle 
miRNAs between cells. Interestingly, Collino et al (2010) 
detected certain miRNAs in MVs, but not in their parental 
cells, suggesting that such miRNAs are selectively 
packaged in MVs for non-cell-autonomous RNAi. 
 
In further supporting the hypothesis that MVs shuttle 
miRNAs between cells, Yuan et al (2009) showed that 
ESCMVs fused with co-incubated mouse embryonic 
fibroblasts to deliver miRNAs. Additionally, Collino et al 
(2010) demonstrated that miRNA-containing MVs 
released from donor human bone marrow-derived 
mesenchymal stem cells (MSCs) delivered miRNAs into 
co-incubated recipient cells, resulting in target-specific 
reduction in protein levels. These data demonstrate that 
certain cell types release MVs that can shuttle functional 
miRNAs between cells (Figure 2A). 
 
Exosomes 
Also involved in intercellular communication, exosomes 
are small, 30-100nm in diameter, membrane-bound 
intraluminal vesicles (ILVs) that are secreted by most 
cells. Formed during the endolysosomal pathway by the 
invagination of the limiting endosomal membrane in 
multivesicular bodies (MVBs), exosomes are released into 
the extracellular space when MVBs fuse with the plasma 
membrane. Exosomes contain cytosolic and plasma 
membrane proteins and express cell recognition molecules 
that allow for selective cellular uptake (reviewed in Théry 
et al, 2002; Simons and Raposo, 2009; Mincheva-Nilsson 
and Baranov, 2010). Similarly, secretory exosomes 
containing RNAs and proteins may be a major mode of 
communication within the nervous system (reviewed in 
Smalheiser, 2007). Exosomes secreted from a variety of 
cell types contain miRNAs (Valadi et al, 2007; Skog et al, 
2008; Taylor and Gercel-Taylor, 2008; Luo et al, 2009; 
Kosaka et al, 2010; Michael et al, 2010; Ohshima et al, 
2010; Pegtel et al, 2010; Zomer et al, 2010; DeIuliis et al, 
2011; Levänen et al, 2011; Mittelbrunn et al, 2011), 
leading to the name “exosomal shuttle RNA” (Lotvall and 
Valadi, 2007; Valadi et al, 2007). In fact, certain miRNAs 
exist in higher levels in exosomes than in their parental 
cells (Valadi et al, 2007; Ohshima et al, 2010; DeIuliis et 
al, 2011; Mittelbrunn et al, 2011), suggesting that such 
miRNAs are selectively packaged into MVBs and secreted 
as exosomes for non-cell-autonomous RNAi. 
 
Pegtel et al (2010) has provided further evidence to 
support the hypothesis that exosomes shuttle miRNAs 
between cells by demonstrating that Epstein-Barr virus 
(EBV)-infected B cells secrete exosomes containing EBV-
encoded miRNAs, which knocked down EBV target genes 
in co-incubated monocyte-derived dendritic cells. 
Similarly, Kosaka et al (2010) showed that cultured 
HEK293 human embryonic kidney cells and COS-7 
African green monkey kidney fibroblast-like cells secrete 
miRNA-containing exosomes, which were internalized in 
recipient cells leading to sequence-specific RNA silencing. 
These data demonstrate that certain cell types release 
exosomes that can shuttle functional miRNAs between 
cells (Figure 2B). 
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Apoptotic bodies, miRNA-Ago2 complexes and SIDT-1 
In addition to MVs and exosomes, apoptotic bodies – a 
form of MVs released during programmed cell death – 
may transport miRNAs between cells (Figure 2C). 
Zernecke et al (2009) demonstrated that apoptotic bodies 
isolated from cultured endothelial cells could deliver 
miRNA-126 into recipient vascular cells, inducing the 
production of chemokine CXC motif ligand 12 (CXCL12). 
Alternatively, miRNAs were shown to exist extracellularly 
in human plasma as vesicle-free Ago2 complexes (Arroyo 
et al, 2011). Because Ago2 is the catalytic component of 
RISC (Liu et al, 2004; Rand et al, 2004), these miRNA-
Ago2 complexes could be responsible for inducing RNAi 
in recipient cells (Figure 2D). 
 
SID-1 (systemic RNAi-defective-1) is a protein channel 
that is necessary for the import of dsRNA into most cells 
in C. elegans (Winston et al, 2002; Feinberg and Hunter, 
2003). Overexpression of the mammalian homologue of 
SID-1 (i.e., SIDT-1) was shown to increase internalization 
of siRNA and RNAi in mammalian cells soaked in 

siRNA-containing medium (Duxbury et al, 2005; Tsang et 
al, 2007) (Figure 2E). However, at endogenous levels, 
SIDT-1 expression appeared to be insufficient for siRNA 
uptake into mammalian cells (Tsang et al, 2007).  
 
MECHANSIMS OF CELL CONTACT-DEPENDENT 
NON-CELL-AUTONOMOUS RNAi 
 
Tunneling nanotubes 
Tunneling nanotubes (TNTs) were first identified in 
cultured rat pheochromocytoma PC12 cells as intercellular 
structures with diameters of 50-200nm and lengths of up 
to several cell diameters (Rustom et al, 2004). They were 
shown to hover between cells, transferring membrane 
components and organelles between the cytosols of 
adjoining cells (Rustom et al, 2004). TNTs with a variety 
of diameters, lengths, and compositions have since been 
identified in vitro in numerous cell types (reviewed in 
Gerdes and Carvalho, 2008; Gurke et al, 2008) and in vivo 
between bone marrow-derived MHC class II-positive cells 
in the corneal stroma of mice (Chinnery et al, 2008).  

 
 

 
 
 
Figure 2. Possible mechanisms of non-cell-autonomous RNAi in cultured mammalian cells. Non-cell-autonomous RNAi can occur 
by cell contact-independent mechanisms, such as the shuttling of miRNA-containing MVs (A), exosomes (B), or apoptotic bodies 
(C) between cells. Additionally, miRNA-Ago2 complexes may induce RNAi in recipient cells (D). siRNAs and miRNAs may also 
utilize SIDT-1, when present at high expression levels, for entry into cells and to generate RNAi (E). Non-cell-autonomous RNAi 
can also occur by cell contact-dependent mechanisms, relying on TNTs (F), gap junctions (G), or ISs (H). 
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Two types of TNTs have been identified in cultured 
human macrophages: TNTs less than 0.7μm in diameter 
that contain F-actin, and TNTs greater than 0.7μm in 
diameter that contain F-actin and microtubules (Önfelt et 
al, 2006). Bidirectional transfer of mitochondria and 
intracellular vesicles (including late endosomes and 
lysosomes) can occur in the latter variety of TNTs (Önfelt 
et al, 2006), suggesting that TNTs could mediate the 
transfer of miRNA-containing endosomal vesicles 
between cells (Figure 2F). In agreement, Belting and 
Wittrup (2008) reviewed TNTs as a potential mechanism 
for the intercellular transfer of genetic material, due in part 
to their ability to transfer endosomal vesicles between 
cells. Additionally, TNTs are remarkably similar to 
plasmodesmata (reviewed in Rustom, 2009), which are 
involved in the transfer of siRNAs between plant cells. In 
fact, donor human MSCs were shown to infuse siRNAs 
into co-cultured recipient neural progenitor cells (Mitchell 
et al, 2011; Olson et al, 2011) through TNTs and other 
mechanisms (Nolta JA, personal communication). 
 
Gap junctions 
Gap junctions are intercellular channels that span the 
plasma membranes of adjoining cells, connecting the 
cytosols and allowing for cell-to-cell communication 
(reviewed in Bruzzone et al, 1996). In a gap junction, each 
of two adjacent cells contains a connexon, which is a 
hemichannel composed of six connexin (Cx) proteins. Gap 
junctions form from two identical connexons (homotypic) 
or two different connexons (heterotypic). Most tissues 
express more than one type of connexin and connexins 
often have distinct tissue and cellular distributions. Gap 
junction intercellular communication (GJIC) allows water-
soluble molecules (e.g., ions, second messengers, and 
small metabolites) to diffuse between cells (reviewed in 
Bruzzone et al, 1996). Emerging evidence suggests that 
GJIC also mediates the transfer of RNAi between cells.  
 
Valiunas et al (2005) demonstrated that there was transfer 
of RNAi targeting DNA polymerase β from donor normal 
rat kidney (NRK) cells stably expressing shRNA against 
DNA polymerase β to co-cultured recipient NRK cells 
(Valiunas et al, 2005). NRK cells express Cx43 (Hand et 
al, 2002); however, repeated experiments using donor and 
recipient cells that expressed Cx26 and Cx32 but not 
Cx43, or that were connexin-deficient, did not show 
knockdown of DNA polymerase β in recipient cells 
(Valiunas et al, 2005). 
 
In similar co-culture experiments, Wolvetang et al (2007) 
demonstrated a gap junction (Cx43 and/or Cx45)-mediated 
transfer of RNAi targeting green fluorescent protein (GFP) 
from donor human embryonic stem cells (hESCs) stably 
expressing shRNA against GFP to co-cultured recipient 
hESCs stably expressing GFP. Likewise, Kizana et al 
(2009) observed the transfer of RNAi targeting enhanced 
GFP (eGFP) from donor neonatal rat ventricular myocytes 
(NRVMs) stably expressing shRNA against eGFP to co-
cultured recipient NRVMs stably expressing eGFP. 
NRVMs express Cx43 (Kizana et al, 2007); however, 
there was no change in eGFP levels when the NRVMs 
expressed a Cx43 dominant-negative mutant, suggesting 
that the reduction in eGFP was dependent on Cx43 gap 

junctions (Kizana et al, 2009). Lastly, Lim et al (2011) 
reported that miRNAs against CXCL12 were transferred 
from donor bone marrow stromal cells to co-cultured 
recipient breast cancer cells through gap junctions 
composed of Cx43, leading to reduced expression of 
CXCL12 in the recipient cells. Together, these studies 
demonstrate that RNAi transfers between cells through 
gap junctions composed of certain connexins, including 
Cx43 (Figure 2G). 
 
Immunological synapses 
An immunological synapse (IS) is a junction that forms 
at the interface of a T cell and an antigen-presenting 
cell (APC), allowing for cell-to-cell interactions to 
modulate the immune response (reviewed in Rodríguez-
Fernández et al, 2010). Mittelbrunn et al (2011) 
demonstrated that miRNA-containing exosomes 
transferred from T cells to APCs upon antigen-induced 
IS formation, resulting in sequence-specific RNA 
silencing in the recipient APCs. The T cell MVBs 
polarized towards the IS, which enhanced the secretion 
of miRNA-containing exosomes (Mittelbrunn et al, 
2011). These data suggest that RNAi may transfer 
between immune cells through ISs (Figure 2H). 
 
CONSIDERATIONS IN STUDIES OF NON-CELL-
AUTONOMOUS RNAi IN MAMMALIAN CELLS 
 
The method of introducing the RNAi agent into the 
donor cells 
Different methods of introducing the RNAi agent into the 
donor cells may impact the transfer of RNAi between 
cells. For example, a common method of transfecting cells 
with siRNA involves complexing the siRNA with a 
cationic lipid carrier to create siRNA-lipoplexes. Recent 
data suggest that a majority of siRNA-lipoplexes 
introduced into cells persist in endolysosomes (Lu et al, 
2009). Because endolysosomal trafficking may be 
involved in intercellular transfer of RNAi (reviewed in 
Gibbings and Voinnet, 2010), siRNA-lipoplexes within 
endolysomes may be more likely to transfer between cells 
than siRNA introduced into cells by a different method.  
 
The method of introducing the RNAi agent into the donor 
cells may also impact the potency of RNA silencing in the 
recipient cells. Assuming that the donor cells remain 
viable at the target site, donor cells stably expressing 
shRNA or miRNA may induce more potent RNA silencing 
in the recipient cells than donor cells transiently 
expressing siRNA. 
 
Donor to recipient cell ratio 
Increasing the ratio of siRNA-expressing donor cells to 
recipient cells in co-culture increased target gene 
knockdown in recipient cells (Valiunas et al, 2005; 
Wolvetang et al, 2007), suggesting that a higher ratio of 
donor to recipient cells results in more RNA silencing 
signals entering the recipient cells. By increasing the ratio 
of donor to recipient cells, we expect to eventually reach a 
maximum percentage of target gene knockdown in 
recipient cells (Figure 3). This maximum would depend on 
a variety of factors including the rate of target mRNA 
turnover in recipient cells, the number of RNA silencing 
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signals transferred by each donor cell, and the potency of 
each RNA silencing signal. Additionally, in cell contact-
dependent RNAi transfer, limited points of contact 
between the donor and recipient cells may increase the 
time of co-culture required to reach the maximum target 
gene knockdown in recipient cells or may reduce the 
maximum altogether. 
 
RNAi in donor cells following intercellular transfer of 
RNAi to recipient cells 
While the transfer of RNA silencing signals from donor 
to recipient cells may lessen the potency of RNAi in the 
donor cells, we predict that the transfer would not 
eliminate RNAi in the donor cells. Each activated RISC 
undergoes multiple rounds of RNA silencing (Hutvágner 
and Zamore, 2002), suggesting that potent RNA 
silencing could occur in the donor cells despite the 
transfer of some RNA silencing signals to the recipient 
cells. Additionally, an RNA-dependent RNA polymerase 
(RdRP) has recently been identified in mammalian cells 
(Maida et al, 2009). 
 
 

 
 
 
Figure 3. The predicted transfer of RNAi when the ratio of 
siRNA-expressing donor cells to recipient cells in co-culture is 
increased. Valiunas et al (2005) observed a greater percentage of 
target gene knockdown in recipient cells when the ratio of donor 
to recipient cells increased from 1:1 to 2:1. Similarly, Wolvetang 
et al (2007) observed a progressive increase in target gene 
knockdown in recipient cells when the ratio of donor to recipient 
cells increased from 1:1 to 2:1 to 3:1. By increasing the ratio of 
donor to recipient cells, we expect to eventually reach a 
maximum percentage of target gene knockdown in recipient 
cells. In cell contact-dependent transfer of RNAi, such as by 
GJIC, limited points of contact between the donor and recipient 
cells may reduce the maximum target gene knockdown in 
recipient cells. 
 
 
RdRPs are primed by existing siRNAs to produce more 
dsRNAs, thereby amplifying RNA silencing (Sijen et al, 
2001; reviewed in Nishikura, 2001). Thus, the transfer of 
RNA silencing signals from donor to recipient cells would 
not necessarily eliminate RNAi in the donor cells. 
Unfortunately, limited understanding of the molecular 
nature of the transferred RNA silencing signal makes it 
difficult to predict how RdRPs or the multi-turnover nature 
of RISC impacts the transfer of RNAi between 
mammalian cells. 

MECHANISTIC INSIGHTS INTO NON-CELL-
AUTONOMOUS RNAi IN MAMMALIAN CELLS 
 
Molecular nature of the transferred RNA silencing 
signal 
In plants, the RNA silencing signal that spreads short 
distances (10-15 cells) from cell to cell through 
plasmodesmata is a 21-nt siRNA duplex (Himber et al, 
2003; Dunoyer et al, 2005; Dunoyer et al, 2010; reviewed 
in Chitwood and Timmermans, 2010). However, the 
molecular nature of the RNA silencing signal that spreads 
systemically in plants and in C. elegans remains unclear 
(reviewed in Mlotshwa et al, 2002), as does the molecular 
nature of the transferred RNA silencing signal in 
mammalian cells. 
 
It is unlikely that long dsRNA is the RNA silencing 
signal that transfers between mammalian cells, as 
dsRNAs longer than 30nt activate the interferon system 
(Minks et al, 1979; Manche et al, 1992). In agreement, 
Valiunas et al (2005), Wolvetang et al (2007), and 
Kizana et al (2009) hypothesized that Dicer-processed 
shRNA was the RNA silencing signal transferred 
between mammalian cells through gap junctions. 
Valiunas et al (2005) demonstrated that oligonucleotides 
(morphilinos) simulating siRNAs, with molecular 
weights of ~2-4kDa, minor diameters of 1.0-1.1nm, and 
lengths of 7.6nm could diffuse between cells through 
Cx43 gap junctions. The oligonucleotide permeation 
through the Cx43 gap junctions decreased as the length 
of the oligonucleotides increased, which was expected as 
the minor diameter of the oligonucleotides was close to 
the pore diameter of the gap junctions (~1.0-1.5nm) 
(Valiunas et al, 2005). A hybridized, double-stranded 12-
mer oligonucleotide had significantly decreased 
permeation through the Cx43 gap junctions when 
compared with a single-stranded 12-mer oligonucleotide, 
suggesting that single-stranded siRNAs are more likely 
to transfer through Cx43 gap junctions than hybridized 
siRNAs (Valiunas et al, 2005). Additionally, Kizana et al 
(2009) determined that, compared with shRNA-
expressing donor cells, co-cultured recipient cells 
contained 25% of the copy number of the antisense 
strand of shRNA, suggesting that the antisense strand of 
shRNA, or possibly the shRNA duplex, transfers from 
donor to recipient cells through Cx43 gap junctions. 
 
Rechavi et al (2009) demonstrated the transfer of 22-nt 
Cy3-labeled dsRNAs, or possibly metabolic products of 
those dsRNAs, from donor B cells to recipient T cells. 
However, 22-nt FITC-conjugated locked nucleic acids did 
not transfer between cells, suggesting that structural 
specificity is involved in intercellular RNA transfer 
(Rechavi et al, 2009). Additionally, Rechavi et al (2009) 
did not detect the movement of the RISC component Ago2 
between donor and recipient cells, suggesting that small 
RNAs transfer between cells independently of Ago2. 
Based on these studies, we hypothesize that the antisense 
strand of Dicer-processed siRNA may be the RNA 
silencing signal that transfers between cells in non-cell-
autonomous RNAi; however, we recognize that there may 
be different RNA silencing signals depending on the 
mechanism of non-cell-autonomous RNAi. 
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Endolysosmal trafficking and intercellular transfer of 
RNAi 
There is increasing data linking RNAi to endolysosomal 
trafficking (reviewed in Siomi and Siomi, 2009; Gibbings 
and Voinnet, 2010). In the endolysosomal pathway, the 
endosomal sorting complex required for transport 
(ESCRT) is required for the invagination of the limiting 
endosomal membrane in MVBs to form ILVs (reviewed in 
Babst, 2005). ESCRT is also required for the sorting of 
endosomal cargo proteins into ILVs. MVBs can fuse with 
the lysosome for degradation or they can fuse with the 
plasma membrane to secrete their ILVs, which are then 
referred to as exosomes. 
 
Gibbings et al (2009) demonstrated that RISC proteins 
GW182 and Ago2 were present with miRNAs in 
endosomes/MVBs from cultured monocytes, suggesting 
that miRNAs and RISC congregate on endosomes and/or 
MVBs. Furthermore, Lee et al (2009) discovered that in 
cultured HeLa cervical cancer cells, blocking the 
maturation of MVBs into lysosomes with Hermansky-
Pudlak Syndrome 4 mutants stimulated RNAi. These 
findings, together with data showing that exosomes 
contain miRNAs (Valadi et al, 2007; Skog et al, 2008; 
Taylor and Gercel-Taylor, 2008; Luo et al, 2009; Kosaka 
et al, 2010; Michael et al, 2010; Ohshima et al, 2010; 
Pegtel et al, 2010; Zomer et al, 2010; DeIuliis et al, 2011; 
Levänen et al, 2011; Mittelbrunn et al, 2011), suggest that 
molecular pathways control the packaging of miRNA and 
RISC components into endosomes/MVBs and mediate 
intercellular transfer of RNAi (reviewed in Siomi and 
Siomi, 2009; Gibbings and Voinnet, 2010). However, the 
details of such pathways remain unclear. Although the 
ESCRT machinery appears to be involved in MVB 
formation (reviewed in Babst, 2005), evidence suggests 
that sphingomyelinase 2, which regulates ceramide 
biosynthesis, but not the ESCRT machinery, is involved in 
the secretion of miRNA-containing exosomes (Kosaka et 
al, 2010; Mittelbrunn et al, 2011).  
 
IMPLICATIONS FOR IN VIVO CELL-BASED RNAi 
DELIVERY 
 
Despite the enormous potential of RNAi for disease 
therapy, current in vivo RNAi delivery strategies 
(reviewed in Whitehead et al, 2009; Lares et al, 2010), 
such as those using liposomes, cationic polymers, or viral 
vectors, have been hindered by a variety of challenges 
(reviewed in Trehan et al, 2010), including immune 
system activation and inefficient cell targeting. Cell-based 
RNAi delivery, in which donor cells act as RNAi delivery 
vehicles, can potentially overcome these challenges 
(reviewed in Brink et al, 2010; Brink et al, 2011). 
Autologous or immunoprivileged allogeneic donor cells 
may avoid host immune system activation, and certain cell 
types inherently migrate to tumors or wounds. 
Furthermore, in areas where traditional RNAi delivery 
vehicles have limited diffusion, the spread of RNAi may 
be more efficient by transferring the RNA silencing signal 
from cell to cell. 
 
MSCs are excellent candidates for in vivo cell-based RNAi 
delivery because they exhibit innate tumor- and wound-

homing abilities, are considered immunoprivileged, and 
can be isolated in large numbers from bone marrow or 
adipose tissue (reviewed in Brink et al, 2010; Dwyer et al, 
2010, Hu et al, 2010). Furthermore, MSCs express Cx43 
(Valiunas et al, 2004), allowing for the transfer of RNAi 
from MSCs to Cx43-expressing recipient cells by GJIC. 
MSCs can also form TNTs (Plotnikov et al, 2010), and 
release miRNA-containing MVs (Collino et al, 2010) and 
exosomes (DeIuliis et al, 2011), illustrating their potential 
to participate in non-cell-autonomous RNAi by multiple 
mechanisms. 
 
CONCLUSIONS 
 
Emerging evidence demonstrates that non-cell-
autonomous RNAi occurs in cultured mammalian cells. 
This phenomenon can occur by cell contact-independent 
mechanisms (Figure 2A-D), such as the shuttling of 
miRNA-containing MVs, exosomes, or apoptotic bodies 
between cells. Non-cell-autonomous RNAi can also occur 
by cell contact-dependent mechanisms, relying on TNTs, 
gap junctions, or ISs (Figure 2F-H). Non-cell-autonomous 
RNAi in mammalian cells may allow for the development 
of in vivo cell-based RNAi delivery, which has the 
potential to overcome major challenges in RNAi delivery 
and allow for effective RNAi therapies. 
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