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Abstract

Next-Generation Sequencing (NGS) has the range of high-throughput quickly adapted into the countless
facet of viral diagnostic research. This method has been extensively applying in full genome sequencing,
genetic diversity identification, transcriptomic routine diagnostic work patient care and management,
and the new understanding of the interactions between viral and host transcriptome, to promote virus
research. An exciting era of viral exploration has begun and will set us new challenges to understand the
role of newly discovered viral diversity in both disease and health. In this review, discuss about the
preparation of viral nucleic acid templates for sequencing, assay formats underlying next-generation
sequencing systems, methods for imaging and base calling, quality control, data processing pipelines and
bioinformatics approaches for sequence alignment, variant calling and suggestions for selecting suitable
tools. Also discuss of the most important advances that the new sequencing technologies have brought to
the fields of clinical virology and challenges behind it.
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Introduction
Many viruses show the high degree of genetic diversity
continuously, due to a large number of evolutionary changes,
short generation times, globalization, climate changes, large
population sizes, and increased number of
immunocompromised people [1]. The human is getting
infected with a cumulative problem of viral diseases caused by
the appearance of novel unidentified viruses and emergence of
new infections [2]. Medically important immune
immunodeficiency virus and hepatitis virus, Influenza like
illness- causing viruses and severe acute respiratory illness
causing viruses and high genetic heterogeneity causing virus in
the patient [3]. Assessing of intra-host viral genetic diversity is
really very important to know the evolutionary sequences of
viruses, for manipulative real vaccines, and for the
achievement of antiviral therapy [4,5].

Sometimes viral etiology cannot be characterized by traditional
culture and molecular methods [6]. Scarce techniques, such as
depictive modification investigation or arbitrary sequencing of
plasmid libraries of nuclease resilient drivels of viral genomes
[7], take lead in the previous to the discovery of several
viruses, counting polyomavirus [8]. Human herpes virus type
[9], Human GB [10] human parvovirus [11].

Need to advance approaches for the genetic characterization of
suspected viral pathogens or new viruses [12]. So, NGS
techniques signify an influential tool which can be useful to
metagenomics founded approaches for the identification of
novel pathogenic viruses in patients care [13]. In this review, I

will discuss an overview of NGS challenge, opportunity in
virology, specifically in virus discovery, genome sequencing
and transcriptomics.

Next-generation Sequencing
NGS is capable of sequencing large numbers of different DNA
sequences in a single reaction [14]. All Next-Generation
Sequencing (NGS) technologies monitor the sequential
addition of nucleotides to immobilized and spatially arrayed
DNA templates, but differ substantially in how these templates
are generated and how they are interrogated to reveal their
sequences [15]. Current NGS platforms may show significant
differences and their different characteristics are mentioned in
(Table 1).

Choice of platform
Important factors are included to choose of the machine, such
as the size of the genome, G+C content, as well as the depth of
coverage and accuracy required [16]. It is, therefore, most
important to take advice from local service providers according
to your requirement.

Methods
The data of NGS for viral diversity analysis depends
significantly on the quality and preparation of the samples [17].
The high-quality of protocols castoff for genome extraction
and removal of unwanted RNA and DNA from other sources
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like host cells depends on experiment handling [18]. To
diminish experimental variations, individual step needs
cautious attention from preparation to sequence data analysis
(Figure 1).

Figure 1. Workflow of next-generation sequencing.

Sample preparation
Nucleic acids may be extracted from whole blood, plasma,
serum, throat swabs, cerebral spinal fluid, virus-infected
supernatants, and other cell-free body fluids by using a nucleic
acid extraction kit or manually by triazole methods using
omitting RNase or DNase digestion according to the
manufacturer’s recommended protocols [19,20]. RNA is bound
to an advanced silica gel membrane under optimal buffering
conditions [21]. A simple two-step washing protocol ensures
that PCR inhibitors such as proteins or divalent cations are
completely removed, leaving high-quality RNA to be eluted in
Milli-Q water [22]. Nucleic acid extraction from viral samples
brings with it the probable extra contest of low or variable viral
titers [23]. Users are advised to low viral titers must find a
method that is easy to use and that ensures high quantity for
NGS [24].

Library preparation
The clonal amplification of each DNA fragment is performed
by bridge amplification or emulsion PCR is necessary to
generate sufficient copies of sequencing template [25]. The
fragment libraries are obtained by annealing platform-specific
adaptors to fragments generated from a DNA source of
interest, such as genomic DNA, double-stranded cDNA, and
PCR amplicons [26]. The presence of adapter sequences
enables selective clonal amplification of the library molecules

[27]. Therefore, no bacterial cloning step is required to amplify
the template fragment in a bacterial intermediate, as is
performed in traditional sequencing approaches; the adapter
sequence also contains a docking site for the platform-specific
sequencing primers [28]. The conventional method for DNA
library preparation contains of 4 steps (I) Fragmentation of
DNA (II) End overhaul of fragmented DNA (III) Ligation of
adapter sequences (not for single-molecule sequencing
applications) (IV) Optional library amplification [29]. At
present different method are used to produce fragmented
genomic DNA, such as sonication, nebulization, enzymatic
digestion, and hydrodynamic shearing. Each method has
specific compensation and limitations [30]. Enzymatic
digestion is simple and rapid, but it is frequently tricky to
precisely control the fragment length distribution [31]. In
addition, this method is likely to carry in biases regarding the
representation of genomic DNA [32]. The further three
techniques make use of physical methods to start dual strand
breaks into DNA, which are supposed to arise randomly
resulting in an unbiased representation of the DNA in the
library [33]. The subsequent DNA fragments size qualitative
analysis can be done by agarose gel electrophoresis [34].

Following fragmentation, the DNA sections must be repaired
to generate blunt-ended, 5'-phosphorylated DNA ends
compatible with the sequencing platform-specific adapter
ligation strategy [35]. The library generation efficiency is
directly dependent on the efficiency and accuracy of these
DNA end-repair steps [36].

The end-repair mix converts 5'- and 3'-overhanging ends to 5'-
phosphorylated blunt-ended DNA [37]. In most cases, the end
repair is proficient by manipulating the 5'-3' polymerase and
the 3'-5' exonuclease activities of T4 DNA polymerase,
although T4 Polynucleotide Kinase confirms the 5'-
phoshorylation at blunt-end DNA fragments, preparing these
fragments for subsequent adapter ligation [38]. The blunt-end
DNA fragments can either directly be cast-off for adapter-
ligation, or essential the adding of a single A overhang at the 3'
ends of the DNA fragments to simplify succeeding ligation of
platform-specific connecters through well-suited solitary T
overhangs [39]. Classically, this A-addition stage is catalysed
by Klenow Fragment (minus 3' to 5' exonuclease) or other
polymerases with terminal transferase activity [40]. Ligase
repaired library fragments, followed by reaction cleanup and
DNA size selection to remove free library adapters [41]. The
approaches for size selection of library comprise agrose gel
separation, the usage of magnetic beads, or progressive
column-based refinement methods [42]. Adapter-dimers that
can occur during the ligation and will subsequently be co-
amplified with the adapter-ligated library fragments must be
depleted from the libraries prior to sequencing, as they reduce
the capacity of the sequencing platform for real library
fragments and reduce sequencing quality [43]. Some
sequencing platforms require a narrow distribution of library
fragments for optimal results, which in many cases can only be
achieved by excising the respective fragment section from the
gel. This can also serve to deplete adapter-dimmers [44].
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Fragment DNA libraries should be competent and quantified
[45]. During library amplification stage, high-quality DNA
polymerases are used to either produce the complete adapter
sequence desirable for consequent clonal amplification and
binding of sequencing primers with overlapping PCR primers,
and/or to produce sophisticated vintages of the DNA libraries
[46]. Optimal library amplification requires DNA polymerase
with high fidelity and minimal sequence bias [47].

To enable efficient use of the sequencing capacity, sequencing
libraries generated from different samples can be pooled and
sequenced in the same sequencing run [48]. This is enabled by
ligation DNA fragments to adaptors with characteristic
barcodes, i.e., short stretches of nucleotide sequences that are
distinct for each sample [49].

A complete sequencing library can subsequently be
constructed by limited rounds of the PCR amplification of such
tagged DNA fragments, limiting handling steps and saving
time [50]. However, libraries generated using in vitro
transposition may show higher sequence bias compared to
those generated using conventional methods [51].

Library quality control for NGS
A high-quality library is a key to successful NGS [52]. Library
construction includes complex steps, such as fragmenting the

sample, repairing ends, adenylation of ends, ligation of
adapters, and amplifying the library [53]. Monitoring of each
step is needed to perform very carefully, including examination
of the size of library after sample fragmentation and a size and
concentration checked after ligation of adapters [54]. Library
authentication helps by way of the final library excellence
control step, which examines the library size and quantity [55].

Sequencing
To accomplish nucleic acid sequence from the amplified
libraries, the library fragments act as a template [56]. The
sequencing occurs from beginning to end a cycle of washing
and flooding the fragments with the recognized nucleotides in
a sequential order [57]. As nucleotides incorporate into the
growing DNA strand, they are digitally recorded as sequence
[58]. The PGM and the MiSeq each rely on a slightly different
mechanism for detecting nucleotide sequence information [59].
The PGM performs semiconductor sequencing that relies on
the detection of pH changes induced by the release of a
hydrogen ion upon the incorporation of a nucleotide into a
growing DNA strand [60]. Mi-sequence, is based on the
detection of fluorescence produced by the incorporation of
fluorescently labeled nucleotides into the growing strand of
DNA [61,62].

Table 1. Review of current next-generation technologies.

Machine Method Sequencing
chemistry

Read length
(bp)

Sequencing
speed/h

Maximum
output per
run

Accuracy
(%)

Error rate* Main source of error

454 FLX Emulsion PCR Pyrosequencing 400-700 13 Mbp 700 Mbp 99.9 10-2-10-4 Intensity cutoff,
homopolymers,
amplification, mixed
beads

Illumina
(Illumina)

Bridge PCR Reversible
terminators

100-300 25 Mbp 600 Gbp 99.9 10-2-10-3 Homopolymers, phasing,
nucleotide labeling,
amplification, low
coverage of AT rich
regions

Solid (Life
technologies)

Emulsion PCR Ligation 75-85 21-28 Mbp 80-360 Gbp 99.9 10-2-10-3 Phasing, nucleotide
labeling, signal
degradation, mixed
beads, low coverage of
AT rich regions

Helicos (Helicos
Biosciences)

No amplification
Single molecule

Reversible
terminators

25-55 83 Mbp 35 Gbp 97 10-2 Polymerase employed,
molecule loss, low
intensities

Ion torrent PGM Emulsion PCR Detection of
released H

100-400 25 Mb-16 Gbp 100 Mb-64
Gbp

99 3 × 10-2 Homopolymers,
amplification

Table 2. Tools for next-generation sequencing data analysis.

Category Tool Reference

miRNA prediction miRDeep/miRDeep2 [63]

Alignment/mapping FastQC [64]

De novo assembly Velvet [65]

Quality Viewer qrqc [66]

Quality control FASTQ Quality Filter [67]

Adapter trimming cutadapt [68]

Alignment/mapping Bowtie/Bowtie2 [69]

Counting reads per transcript HTSeq [70]

Normalization, bias correction, and
statistically testing differential
expression

DESeq [71]
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Alignment/mapping MAQ [72]

SNV detection VarScan/VarScan2 [86]

Structural variation detection PEMer [87]

Figure 2. Steps for analytic strategies of DNA-seq and RNA-seq.

Imaging
Throughout each run after NGS, more than a huge image data
are generated and transformed to FASTQ format files [70].
Image examination usages raw images to trace clusters, export
the positions and intensity and evaluate the noise for each
cluster [71]. The base-calling stage recognizes the preparation
of base reads from each cluster and filters undefined or low-
quality reads [72]. In case of multiple samples identification,
each sample analysed by its individual index sequences called
bar-codes [73].

Bioinformatics
Once the data is mapped onto the reference genome by
different processors, and then aggregated by a head computing
node to provide the final mapped genomic sequences which are
desired as shown in Figure 2 [74]. Mapping of the data
depending on the size of the genome that needs to be mapped
[75]. For reference mapping, we can use a pre-existing
reference genome sequence [76]. Information produced from a
bench-top sequencer can be effortlessly examined by means of
96-256 GB RAM to achieve the mapping of sequence data, for
full- length genome size is steadily advanced about 3 GB
versus the 40-60 MB and a few MB are obligatory in the case
of a steady clinical gene panel [77]. Denovo sequencing is
mandatory lengthier read lengths and larger analysis to perform
the overlapping process resourcefully [78]. Denovo read
mapping is a considerable additional computationally
concentrated course associated to the reference mapping
procedure [79]. Here is a huge network of bioinformatics
software obtainable for the resolution of examination of DNA
sequencing data [80]. At present-day, a collection of free

online and commercial software is cast-off for the purpose of
NGS data analysis as shown in Table 2 [81].

Read alignment
The orientation-created assemblage is employed to bring into
line few hundred or thousand millions of alignment to an
existing reference genome [82]. MAQ contrivance remains
founded on the idea of a spread-out kernel indexing approach
to map recites with orientation arrangement [83]. BFAST tool
container usage for its speed and accuracy on mapping [84].
Novo align uses the Needle man-Wunsch procedure and affine
gap consequences to the invention the universally optimal
alignment. Burrows-Wheeler Aligner (BWA) short algorithm
that queries short reads up to ~200 bp with a high sensitivity
rate and queries long reads with a high error rate [85]. SOAP3,
the latest version of SOAP supports Graphics Processing Unit
(GPU)-based corresponding orientation and within 30 s for a
one-million-read configuration onto the human orientation
genome [86].

De novo assembly
The de novo methods mainly for grouping short reads into
significant contigs and accumulating these contigs addicted to
supports to rebuild the unique genomic DNA for novel species
[87]. The crucial challenge of de novo assembly is that the read
length is shorter than recurrences in the genome [88]. Velvet is
practical by the postponement of valuable graph popularization
to reduce the path difficulty [89].

After gathering the sequence, the next step in systematic
cylinders is using a tool to call SNVs for documentation of
hereditary alternatives. GATK breaks re-alignment
supplements/removals (indels), achieves dishonorable
excellence recalibration, noises genotypes, and differentiates
factual separating difference by machine learning to regulate
and genotype differences among manifold samples. SAM and
VarScan/VarScan2tools computes genotype likelihood to call
SNVs or short indels [90], employs experiential approaches
and a numerical test to detect SNVs and indels. Somatic Sniper
[91] and Joint SNVMix [92], use the genotype prospect typical
of MAQ and two probabilistic graphical models, individually,
to measure the possibility of the variances among genotypes
[93].

NGS applications to virology
NGS applications to clinical virology briefly described here.

Virus discovery (metagenomics): Detection of novel viruses
from clinically important samples in human and animal
diseases, e.g. a new arenavirus tangled in resettle-related
disease collections, [94] and the new Ebola virus Bundi-
ubugyo [95], and the characterization of a viral etiology of an
outbreak of a disease [96]. NGS is also useful in the
environment [97], in animals [98,99], and in humans [100].

Whole viral genome reconstruction: Whole genome
sequencing can be done by shotgun metagenomic sequencing
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of random libraries and shotgun sequencing of full genome
amplicons, this type of method has been applied for sequencing
of pandemic influenza virus [101] HIV [2], human herpes
viruses [12], and other viruses, in most of the investigations of
genetic diversity of intra-host virus variability has been
observed.

Characterization of intra-host variability: NGS has been
widely used for the characterization of intra-host variability of
influenza virus [101], HCV [102], and HIV [2], Due to high
replication ability of the replication [12], though a virus
commonly administrates in the early stages of disease,
throughout the following stages a large number of mutations
emerges naturally [95], These changes are rapidly improved
[98], The highly variable district of classifications inside an
expected host, mentioned to as quasi-species, allows a viral
population to rapidly adapt to dynamic environments and
evolve resistance to vaccines and antiviral drugs [101], Most of
these studies have been based on Ultra-Deep Sequencing
(UDS) of PCR-generated amplicons spanning the genomic
regions of interest [100].

Epidemiology of viral infections and viral evolution
NGS is existence used to examine the epidemiology of viral
infections and viral progress, addressing issues such as viral
super infection, which occurs when a previously infected
individual acquires a new distinct strain [103], tracing the
evolution and spread of viral strains, such as the emergence,
evolution and worldwide spread of viruses, tracing the spread
of viruses among persons [66], or showing the progress of
viruses within the host and the machine of immune outflow,
composed with replication suitability, such as in the case of
HIV [2], and HCV infection [102].

Quality control of live-attenuated viral vaccine
Hereditary instability of RNA viruses may lead to the
accumulation of infectious regress ants throughout the
production of living viral vaccines, necessitating detailed
excellence controller to confirm vaccine protection [5], NGS
approaches have been expected as challenges for exhaustive
maintenance inherent reliability of live viral vaccines.

Challenges
Various problems can require exploit since the scientific public
in contradiction of practical contests to differentiate between
de-novo transcript and post-transcriptional modifications [10].

The huge datasets formed by the diverse NGS technologies
derived from their own challenges [13]. In addition, storing
planetary, it will be significant to have correct arrangement
purposes to be able to map cDNA reads onto the genome and
to eliminate poor-quality nucleotide bases [9]. Here might else
be problems with repetitive sequences and homopolymeric
regions at the 5’ or 3’ ends of cDNA reads, which can confuse
5’ RACE and 3’ RACE experiments [10]. This is a common
problem with 454 FLX sequencing as this is identified to
absence precision at homopolymer regions [62]. Huge datasets

will allow more accurate identification of transcript levels and
associated strategies, but remain the risk of data overflow [78].
Finally, conception, examination and clarification will need
substantial points of knowhow, and might similarly necessitate
program design services [82]. Conception might be realized
with the afore stated ARTEMIS [72] and combined genome
Affymetrix, but then again LASERGENE (DNAstar) also offer
modules optimized for RNA-seq analyses [81].

Conclusion
Emerging tools for NGS analysis of viral populations are
required. As new sequencing technologies continue to emerge,
other future bioinformatic challenges will include developing
algorithms for aligning very long reads, and coping with the
unique error profiles of each sequencing technology.
Investigative virology is one of the greatest positive requests
for NGS and thrilling consequences have been attained in the
finding and classification of new viruses, detection of
unexpected viral pathogens in viral sample, ultrasensitive
intensive care of antiviral drug discovery, examination of viral
multiplicity, development and transmission, and human
virome. With the decrease of costs and development of
turnaround period, these methods will possibly develop
important analytical tools trendy clinical procedures samples.
The possible application of these methods in documentation
and confinement agendas can efficiently recover the
competence and dependability of investigation authentication
and in monitoring viral diseases at world level.
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