New era: Drug discovery technologies converge.

Anita Reddy*

Department of Pharmacology, Indian Institute of Science, Bengaluru, India

Introduction

The field of drug discovery is undergoing an unprecedented transformation, largely driven by the burgeoning role of Artificial Intelligence (AI). This article explores how AI significantly accelerates various stages of drug discovery, spanning from initial target identification and lead optimization through to preclinical development, ultimately enhancing efficiency and reducing costs within pharmaceutical research and development. Intelligent systems are poised to reshape the entire landscape of R&D, heralding a new era of accelerated innovation [1].

In oncology, one of the most notoriously difficult targets has been KRAS mutations. Significant progress is being made in understanding and targeting these mutations in cancer. This paper reviews the current landscape, discussing various therapeutic strategies, including direct inhibitors, and delves into the persistent challenges and future prospects for developing effective treatments against KRAS-driven tumors [2].

Beyond developing new drugs from scratch, computational strategies are revolutionizing drug repositioning, an efficient method for identifying novel uses for existing drugs. This review covers successful applications of these strategies, pinpoints current limitations, and outlines future advancements in leveraging computational tools to accelerate this innovative approach to drug discovery [3].

Moreover, novel therapeutic modalities like Proteolysis-Targeting Chimeras (PROTACs) are emerging as a significant force in drug discovery. This article details their unique mechanism of action, their therapeutic potential in specifically degrading target proteins, and the associated development challenges. PROTACs show substantial promise, particularly for addressing previously undruggable targets [4].

Antibody-Drug Conjugates (ADCs) represent another crucial advancement, serving as targeted therapies in cancer. This review highlights the latest advancements and future directions in ADC development, covering their design principles, mechanisms of action, and clinical successes. It also discusses strategies being developed to overcome resistance and toxicity, solidifying ADCs' role as a

vital tool in modern drug development [5].

The application of 'omics' technologies is expanding rapidly, proving instrumental in identifying novel drug targets and biomarkers. This perspective piece explores how integrating genomics, proteomics, and metabolomics provides a comprehensive, holistic view of disease mechanisms. This integration effectively accelerates early-stage drug discovery and supports precision medicine initiatives, paving the way for more tailored therapeutic interventions [6].

Phenotypic screening has regained importance in drug discovery, especially for complex diseases where target-based approaches have often fallen short. This article describes significant methodological advances and notable successes in identifying first-in-class molecules. The integration of phenotypic screening with omics data further aids in de-orphanizing phenotypic hits, offering a powerful complementary strategy to traditional target-centric methods [7].

Breakthroughs in gene editing technologies, particularly CRISPR-Cas systems, are having a transformative impact on drug discovery. This review details how these powerful tools facilitate critical processes such as target validation, disease modeling, and the development of gene-based therapies. Such advancements are opening entirely new avenues for effectively treating genetic disorders and a wide range of complex diseases [8].

Chemical biology approaches play a crucial role in elucidating fundamental biological mechanisms and identifying novel drug targets. This article explores how small molecules are strategically utilized as probes to dissect complex cellular pathways, providing invaluable insights that bridge basic research with therapeutic development. This drives innovative and targeted drug discovery strategies forward [9].

Despite these widespread advancements, significant challenges persist, particularly in discovering drugs for neurodegenerative diseases. This review addresses the ongoing difficulties and highlights innovative strategies, including gene therapies and small molecules. It emphasizes the critical need for improved models and robust biomarkers to accelerate clinical translation and ultimately bring effective treatments to patients suffering from these complex condi-

*Correspondence to: Anita Reddy, Department of Pharmacology, Indian Institute of Science, Bengaluru, India. E-mail: anita.reddy@iisc.ac.in

Received: 03-Apr-2025, Manuscript No. aatr-180; **Editor assigned:** 07-Apr-2025, Pre QC No. aatr-180 (*PQ*); **Reviewed:** 25-Apr-2025, QC No. aatr-180; **Revised:** 06-May-2025, Manuscript No. aatr-180 (*R*); **Published:** 15-May-2025, DOI: 10.35841/aatr-9.2.180

Citation: Reddy A. New era: Drug discovery technologies converge. aatr. 2025;09(02):180.

tions [10].

Conclusion

The landscape of drug discovery is being revolutionized by a convergence of advanced technologies and innovative strategies. Artificial Intelligence (AI) plays a pivotal role, accelerating various stages from target identification to preclinical development, thereby enhancing efficiency and reducing costs across pharmaceutical research and development. Beyond AI, novel therapeutic modalities are emerging. Proteolysis-Targeting Chimeras (PRO-TACs) represent a new approach for degrading target proteins, holding significant promise for previously undruggable targets. Similarly, Antibody-Drug Conjugates (ADCs) are gaining traction as highly targeted cancer therapies, with ongoing efforts to overcome resistance and toxicity challenges. Computational methods are proving invaluable, particularly in drug repositioning, which efficiently identifies new therapeutic uses for existing drugs. This approach leverages computational tools to accelerate the discovery process. Furthermore, 'omics' technologies, encompassing genomics, proteomics, and metabolomics, offer a holistic understanding of disease mechanisms, vital for identifying novel drug targets and biomarkers, and driving precision medicine. Other crucial advancements include phenotypic screening, especially for complex diseases where traditional target-based approaches have struggled. Methodological improvements in this area, combined with omics data integration, help identify and de-orphanize promising hits. Gene editing technologies, specifically CRISPR-Cas systems, are transforming drug discovery by enabling precise target validation, disease modeling, and the development of gene-based therapies for genetic and complex disorders. Chemical biology significantly contributes by using small molecules as probes to elucidate complex cellular pathways, bridging basic research with therapeutic development. Despite these advances, challenges persist in specific areas, such as targeting notoriously difficult KRAS mutations in cancer and developing effective treatments for complex neurodegenerative diseases. Continuous innovation, including gene therapies and improved biomarkers, is essential for addressing these hurdles and advancing therapeutic options.

References

- Zejun Y, Qian H, Jie Y. Artificial intelligence in drug discovery: current trends and future perspectives. Front Pharmacol. 2023;14:1222409.
- Ferdinandos S, Kevin FC, Pasi AJ. Targeting KRAS in Cancer: Current Landscape and Future Directions. Cancer Cell. 2022;40(8):819-839.
- Florent J, Antoine DEMEL, Luc JBLCIV. Computational approaches for drug repositioning: successes, challenges, and future directions. *Drug Dis*cov Today. 2021;26(6):1475-1483.
- 4. Chao Z, Yuchao J, Qiufeng L. PROTACs: A new strategy for drug discovery. Pharmacol Res. 2020;159:104975.
- Rui M, Jianbo S, Zhigang J. Antibody-drug conjugates: a new wave of targeted cancer therapies. Signal Transduct Target Ther. 2020;5:206.
- Yuxin L, Wei Z, Feng D. Applications of Omics in Drug Discovery and Development. Front Pharmacol. 2024;15:1359654.
- Jie Z, Xinyi G, Wei L. Phenotypic Screening for Drug Discovery. A Revival. Cells. 2021;10(11):3121.
- 8. Yash K, Matthew J, Eric W. CRISPR-Cas Systems: A Powerful Tool for Gene Editing and Drug Discovery. Annu Rev Pharmacol Toxicol. 2023;63:437-455.
- 9. Michael AM, Keriann ME, Stuart LS. Chemical biology in drug discovery: current status and future directions. *Nat Chem Biol.* 2022;18(5):610-620.
- Zhihua X, Jun G, Hongli L. Drug discovery for neurodegenerative diseases: Challenges and opportunities. Pharmacol Res. 2023;190:106720.

Citation: Reddy A. New era: Drug discovery technologies converge. aatr. 2025;09(02):180.

aatr, Volume 9:2, 2025