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Short Communication

Introduction
The orthogonal complement of a p×q matrix X with q<p and full 
column rank is a p×(p-q) matrix Y such that  [X,Y] is invertible. 
Note that Y must have full column rank. Jennrich and Satorra in 
Theorem 1 show how to compute an orthogonal complement Y 
of an arbitrary p×q matrix X with full column rank q<p using 
the long form of a QR factorization. Unfortunately, Y is not a 
continuous function of X [1].

In a seminal paper Browne showed how to test the goodness 
of fit of an arbitrary covariance structure [2]. The proof of his 
main result Proposition 4 used a locally continuous orthogonal 
complement function, but because he failed to show such 
functions existed his proof was incomplete. In spite of the fact 
that his test had been used extensively this problem was not 
noticed until 2013 when Jennrich and Satorra pointed out that 
his proof was incomplete and completed it by showing that 
locally continuous orthogonal complement functions exist [1]. 
This was done using the implicit function theorem. A problem 
with the implicit function approach is that it does not give a 
formula for the function produced and Jennrich and Satorra 
conjectured their function could not be expressed by an explicit 
formula.

Browne and Shapiro say that this conjecture is incorrect 
by presenting an explicit formula for a locally continuous 
orthogonal complement function [3]. Browne and Shapiro in 

slightly different notation state the following: Let X0 be any p×q 
matrix with full column rank q<p and 0

cX  be any orthogonal 
complement of X0. Consider the following matrix valued 
function:

( ) ( ) 1
0
c

pF X I X X X X X− ′ ′= − 
Let N be any neighbourhood of X0 such that X has full column 
rank for all X ϵ N. Browne and Shapiro say that on N, F(X) 
is a well-defined continuous function and claim F(X) is an 
orthogonal complement of X for all X in N. They, however, fail 
to show this. In particular they fail to show F(X) has full column 
rank. As a consequence their claim is only a conjecture. We will 
begin by proving their conjecture.

Proof of the Browne-Shapiro conjecture

Lemma 1: Let X0 be a p×q matrix of full column rank q<p. 
There is a neighbourhood N of X0 that contains only full column 
rank matrices.

Proof: Let X be an arbitrary p×q matrix and let ( ) det( )X X X′=ɡ . 
Since ( )Xɡ  is continuous there is δ>0 such that

( ) ( ) ( )0 0 0X X X X Xδ− < ⇒ − <ɡ ɡ ɡ

It follows from the last inequality that ( ) 0X ≠ɡ and hence that 
det( ) 0X X′ ≠  and hence that X has full column rank for all X in 
the neighbourhood

0{ : }N X X X δ= − <
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Lemma 2: Let X0 be a p×q matrix with full column rank q<p 
and let 0

cX  be any orthogonal complement of X0. Then

( ) ( ) 1
0
c

pF X I X X X X X− ′ ′= − 
is continuous and well defined for X N∈ .

Proof: By Lemma 1 all X ϵ N have full column rank. Thus 
F(X) is well defined. It follows from the continuity of matrix 
multiplication and matrix inversion that F(X) is continuous for 
all X ϵ N.

Theorem 1: Let X0 be a p×q matrix with full column rank q<p. 
Let 0

cX  be any orthogonal complement of X0. Then there is a 
neighbourhood N of X0 such that X has full column rank for all 
X ϵ N and

( ) ( ) 1
0
cF X I X X X X X− ′ ′= − 

is an orthogonal complement of X.

Proof: Note that F(X) is p×(p-q) and F(X) is orthogonal 
to X. It is sufficient to prove F(X) has full column rank. Let 

( ) det( ( ) ( ))X F X F X′=ɡ . Then ( )Xɡ  is a continuous and it 
follows from this that there is δ>0 such that

( ) ( ) ( )0 0 0X X X X Xδ− < ⇒ − <ɡ ɡ ɡ

It follows from the last inequality that ( ) 0X ≠ɡ . Hence 
det( ( ) ( )) 0F X F X′ ≠  and hence F(X) has full column rank.

This proof is much simpler than that given by Jennrich and 
Satorra using the implicit function theorem [1]. In their paper 
Browne and Shapiro prove Browne's Proposition 4 without 
using their F(X) formula. One could, however, use Theorem 
1 because it asserts the existence of a locally continuous 
orthogonal complement function and this is all that is needed 
to fix Browne's proof of Proposition 4. There are now three 
proofs of Browne's Proposition 4, the one given by Jennrich and 
Satorra [1], the one given by Browne and Shapiro [3], and the 
one using Theorem 1.

A problem with using Theorem 1 is that for an X of interest one 
has no way of knowing if X is in N since the only thing we know 
about δ is that it is greater than zero. If necessary for an X of 
interest one can always compute an orthogonal complement of 
X using Theorem 1 of Jennrich and Satorra, but it will not be a 
continuous function of X [1].

See the following example which shows numerically that 
Theorem 1 of Jennrich and Satorra produces orthogonal 
complements as does Theorem 1 of this document and also 
suggests an interesting alternative method using F(X) [1].

Theory:

Example:

Let
1 0
0 1
0 0
0 0

X

 
 
 =  
  
 

Then X is a p by q matrix with p = 4 and q = 2. Theorem 1 of 
Jennrich and Satorra [1] says that if

X= QR

is the long form of a QR factorization of X, then the last p-q 
columns of Q are an orthogonal complement of X. Computing a 
QR factorization of X gives

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Q

 
 
 =  
  
 

The last p-q columns of this are:
0 0
0 0
1 0
0 1

Y

 
 
 =  
  
 

and this is an orthogonal complement X. This demonstrates 
numerically that Theorem 1 of Jennrich and Satorra [1] produces 
orthogonal complements.

Note that when X=X0, X satisfies the assumptions of Theorem 1 
and the computed value of

0 0
0 0

( )
1 0
0 1

F X

 
 
 =  
  
 

which is an orthogonal complement of X. Thus in this case at 
least F(X) is an orthogonal complement of X as asserted by 
Theorem 1.

Let
1.1650 0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971

X

− 
 
 =  
  
 

be a random matrix whose components are independent standard 
normal variables. Note that it has full column rank. The value of 
the Browne-Shapiro.

0.0418 0.1114
0.0304 0.4870

( )
0.9969 0.0203

0.0203 0.5035

F X

− 
 − − =  −
  − 

This has full column rank and hence is an orthogonal complement 
of X even though X may not satisfy the basic assumption of 
Theorem 1 above because X is simply a random matrix.

When this is repeated 1000 times in every case F(X) is an 
orthogonal complement of X. This suggests that F(X) is an 
orthogonal complement of X with high probability.

We show below that much more is true. We show F(X) fails 
to be an orthogonal complement of X only for X in subset of 
Labesgue measure zero in Rpxq.

Note that when 0
cX X= , F(X)=0 and hence F(X) is not an 

orthogonal complement of X for all X with full column rank.

A necessary and sufficient condition for F(X) to 
be an orthogonal complement of X.
To simplify the development that follows let us begin by looking 
at the simplest possible case when p = 2 and q = 1. Assume X is 
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not in the column space of 0
cX . Then  in Figure 1 clearly, F(X) 

is a non-zero vector and has full column rank. Thus F(X) is an 
orthogonal complement of X for all X not in the column space 

0
cX . If X is in the column space of 0

cX , then F(X)=0 and hence 
F(X) is not an orthogonal complement of X. Note this happens 
only on a set that has Labesgue measure zero in R2. We will 
show that this happens for arbitrary p by q<p matrices X.

Figure 1. Showing an orthogonal complement of X.

We begin with the following theorem,

Theorem 2: Let F(X) be the Browne-Shapiro formula. That 
0, cX X    is invertible is a necessary and sufficient condition for 

F(X) to be an orthogonal complement of X.

Proof: Assume 0, cX X    has full column rank. Assume F(X) 
does not have full column rank. Then

F(X)a=0

for some vector a a ≠ 0. Thus

( )( )1
0 0cI X X X X X a−′− =

It follows that 0
cX a  is in the column space of X. Thus

0
cX a Xb=

for some vector b. Thus there is a vector in the column space 
of X that is in the column space of 0

cX . It follows that 0, cX X    
does not have full column rank. This contradiction proves F(X) 
has full column rank when 0, cX X    has full column rank. This is 
a sufficient condition for F(X) to be an orthogonal complement 
of X.

If 0, cX X    does not have full column rank, then 0
cXa X b=  for 

two vectors a and b not both zero. If a = 0, then b = 0. This 
implies a ≠ 0 which in turn implies b ≠ 0. Now

( ) ( )( ) ( )( )1 1
0 0cF X a I X X X X X a I X X X X Xb− −′ ′ ′ ′= − = − =

which implies that F(X) does not have full column rank. Thus 
F(X) is not an orthogonal complement of X when 0, cX X    
does not have full column rank. Thus F(X) is an orthogonal 
complement of X if and only if 0, cX X    has full column rank.

How often does F(X) fail to be an orthogonal 
complement of X?
Lemma 2: A polynomial in n variables is either identically 0 or 
its roots have Labesgue measure zero in Rn.

Proof: The proof is by mathematical induction on n. For n=1, 
P(x) of degree d can have at most d roots, which gives us the base 
case. Now, assume that the theorem holds for all polynomials in 
n-1 variables. Let ( )2 2,..., nx x x=  and write

( )1 2( ) ,P x P x x= 

Let I[A] be the indicator function of a set A. By Fubini's theorem,

[ ] [ ]1 2 1 2( ) 0 ( , ) 0I P x dx I P x x dx dx= = =∫ ∫∫  

[ ]1 2 2 1( , ) 0I P x x dx dx= =∫∫  

1(0) 0dx= =∫
The first two integral equalities follow from Fubini's Theorem. 
The last integral equality follows from the fact that given 

( )1 1 2, ,x P x x  is a polynomial in n-1 variables and by the induction 
hypothesis this is identically zero for all 2x  or its zeros have 
Labesgue measure zero in Rn-1[4].

Comment: Lemma 2 is a simple very interesting result which 
apparently is not in the literature. It is not in any journals covered 
in Jstor. It is not in any of the five analysis books we own and 
according to Caron and Traynor it is not in any measure theory 
book.

Theorem 3: The X for which the Browne - Shapiro function 
F(X) is not an orthogonal complement of X have Labesgue 
measure zero in Rp×q.

Proof: F(X) is not an orthogonal complement of X if and 
only if 0, cX X    is singular. This happens if and only if 

0 0det , , 0c cX X X X ′    =     
. As a function of X this is not 

identically zero because it is not zero when X=X0. Moreover 

0 0det , ,c cX X X X ′        
 is a polynomial in p×q variables x=vec(X) 

which is not identically zero. It follows from Lemma 2 that its 
zeros have Lebesgue measure zero in Rpq. Or equivalently the 
X such that F(X) is not an orthogonal complement of X have 
Labesgue measure zero in Rp×q.

Remark: Theorem 3 implies that F(X) almost never fails to be 
an orthogonal complement of X. If X is a sample from a density, 
then F(X) is an orthogonal complement of X with probability 
one.

Conclusion

Browne and Sharpiro [3] give a formula for computing 
orthogonal complements. Let X0 be any p×q matrix with full 
column rank q<p and 0

cX  be any orthogonal complement of 
X0. Browne and Sharpiro function is

( ) ( ) 1
0
c

pF X I X X X X X− ′ ′= − 
They state that if N be any neighbourhood of X0 such that X 
has full column rank for all X ϵ N then F(X) is an orthogonal 
complement of X for all X in N. They, however, fail to show this. 
In particular they fail to show F(X) has full column rank. As a 
consequence their claim is only a conjecture. The main point of 
our paper is to prove their conjecture and much more. We prove 
that on all but a set of p×q matrices X with Labesque measure 
zero, F(X) is an orthogonal complement of X. In particular if X 
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is a sample from a density, F(X) is an orthogonal complement 
of X with probability one.

Theorem 1 is a proof for the Browne-Sharpiro conjecture. We 
also prove additional results that should enhance considerably 
the practical relevance of the Browne-Shapiro function for 
an orthogonal complement. Theorem 2 gives a necessary and 
sufficient condition for F(X) to be an orthogonal complement of 
X. Lemma 2 is a not well known, but very useful result about the 
roots of an arbitrary polynomial in n variables. If the polynomial 
is not identically zero, its roots have Labesque measure zero. 
Theorem 3 is our main result.
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