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Abstract

Veneer cracking or chipping is the major complication of the zirconia based restorations. Monolithic
zirconia has been introduced to overcome this problem, as well as to use in patients with limited
interocclusal space. Many research articles on monolithic zirconia crowns have been published in the
last years. The aim of this review article was to present data about the wear, surface roughness, fracture
strength, optical properties, and marginal fit of monolithic zirconia. A PubMed search was conducted
with the terms of “zirconia” with “monolithic”, “full-contour”, “solid”, “translucent”, “anatomic-
contoured”, “un-veneered”, “non-veneered”, “full-coverage”. Based on the results of these studies,
monolithic zirconia crowns with polished surfaces have been shown to cause the lowest wear on the
antagonists compared to glazed zirconia. The fracture strength of monolithic zirconia has been found
higher than veneered zirconia. Monolithic zirconia may be a promising future and long-term follow-up
studies are needed to determine whether it may be an alternative to conventional veneered zirconia.
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Introduction
Zirconia or zirconium dioxide (ZrO2) is a highly attractive
ceramic material in prosthodontics due to its excellent
mechanical properties related to transformation toughening,
which are the highest ever reported for any dental ceramic and
enhanced natural appearance compared to metal-ceramics
[1-3]. It is widely used to build prosthetic devices because of
its good chemical properties, dimensional stability, high
mechanical strength, toughness, and a Young’s modulus (210
GPa) similar to that of stainless steel alloy (193 GPa) [2,3].

The high initial strength and fracture toughness of zirconia
results from a physical property of partially stabilized zirconia
known as “transformation toughening” [2,3]. Zirconia is a
polymorphic material that has 3 crystal phases: monoclinic
(m), tetragonal (t), and cubic (c). At room temperature,
zirconia is in monoclinic phase and transforms into tetragonal
phase at 1170°C, followed by a cubic structure at 2370°C [2].
While cooling, the metastable tetragonal zirconia is
transformed into stable monoclinic zirconia. The tetragonal to
monoclinic (t→m) phase transformation is associated with a
large volume expansion (3-5%) that induces compressive
stresses opposing crack opening and acts to increase resistance
to crack propagation [3]. In vitro studies of zirconia specimens
demonstrate a flexural strength of 900 to 1200 MPa and a
fracture toughness of 9 to 10 MPa/m2 [4]. It is a bioinert, not
soluble metal oxide [5] that also exhibits a favorable radio-
opacity and a low corrosion potential [1].

Zirconia frameworks can be produced according to two
different CAD/CAM techniques. In soft machining technique,

CAD/CAM systems shape pre-sintered blocks, which involves
machining enlarged frameworks in a so-called green state. The
enlarged pre-sintered zirconia frameworks are then sintered in
a sintering furnace to their full strength that is accompanied by
shrinkage of the milled framework by 25% to the desired
dimensions [1]. In hard machining technique, fully sintered
blocks are shaped [1]. The framework coloration is performed
either adding metal oxides to the zirconia powder, or
embedding the frameworks in metal salt solutions after
machining [6]. Glazing is created by firing a small coating of
transparent glass onto the surface or by heating the framework
up to glazing temperatures for 1 to 2 minutes to get shiny glass
surfaces [7].

Although zirconia has superior mechanical properties, its
opaque white color and insufficient translucency require glassy
porcelain veneering on the framework to achieve a natural
appearance and acceptable esthetics [8]. However, cracking or
chipping of the porcelain veneer has been reported to be a
major complication of these restorations [9-12]. The possible
causes of porcelain veneer cracking are; differences in
coefficient of thermal expansion (CTE) between framework
and porcelain, firing shrinkage of porcelain, porosities, poor
wetting of veneering, flaws on veneering, inadequate
framework design to support veneer porcelain, overloading and
fatique [8].

There are several solutions to overcome the veneer cracking
problem due to its multifactorial nature: alternative application
of techniques for veneering such as CAD/CAM produced
veneer [13], modification of the firing procedures [14], and
modification of the framework design [15]. Another alternative
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solution was to use non-veneered zirconia restorations. The
translucency of zirconia was increased and full-contoured,
monolithic zirconia restorations without veneering porcelain
have become increasingly popular as a result of advances in
CAD/CAM technology [8,16]. The monolithic zirconia has
been used in posterior region, especially for single crowns, in
order to eliminate the veneer cracking [17,18]. It has been
suggested for use in patients with limited interocclusal space
because of its ability to resist high loads with only 0.5 mm
occlusal thickness [19]. The technicians can also prepare
monolithic zirconia for all-on-4 prosthesis by using CAD/
CAM. Limmer et al. [20] presented 1 year results of clinical
outcomes of 4 implant supported monolithic zirconia fixed
dental prosthesis, and observed a few complications related to
restorations. They concluded that these kinds of restorations
might be a therapeutic option in the edentulous mandible.

There are 2 types monolithic zirconia materials; opaque and
translucent zirconia. Opaque zirconia offers significantly
greater flexural strength and indicated in the posterior regions
of the mouth. Translucent zirconia has more natural esthetic
properties. Lava plus high translucency zirconia (3M ESPE)
has a unique shading system that gives laboratories many
options for custom shading and characterization. After milling
a porous green-state block, the laboratory can choose from
among 18 dyeing liquids that cover the 16 Vita Classical A1-
D4 shades to achieve custom coloring. The dyeing liquid is
applied and then, during the sintering step, the color ions are
incorporated into the zirconia. With greater strength and
improved esthetics, this high translucency zirconia has the
potential to be used in either the posterior or anterior regions of
the mouth.

The low temperature degradation (LTD) is an aging
phenomenon related to monolithic zirconia. In the presence of
moisture and at low temperatures (150-400°C), slow tetragonal
to monoclinic transformations occur on the surface of zirconia,
then progress into the bulk of the material [21]. The growth of
the transformation zone results in severe micro-cracking, grain
pullout and surface roughening that leads to decrease in
strength [22]. LTD was found to intensify for rougher zirconia
surfaces; therefore, smooth surfaces are required to prevent
LTD [23].

A definitive cementation protocol for zirconia ceramics has not
been validated yet. Both the conventional and adhesive
cementation techniques are feasible. For the adhesive
cementation, different air-blasting protocols associated with
chemical primers such as formulations containing MDP
monomers or silane coupling agents are the most
recommended conditioning methods for zirconia restorations,
followed by dual-cured resin cements [24,25].

To date, many articles on monolithic zirconia have been
published. However, there is still little general knowledge with
regard to their mechanical behavior and reliability, and the
factors that would contribute to their optimal application
performance. Therefore, the purpose of this article is to give a
succinct literature review on the material properties of
monolithic zirconia, to summarize research articles conducted

on this subject, and provide information on this alternative
restoration type based on the results of original, full-length,
scientific papers published in journals listed in PubMed.

Materials and Methods
A PubMed search was conducted up to May 2015. The terms
of “zirconia” or “zirconium dioxide” or “yttria-stabilized
tetragonal zirconia polycrystals (Y-TZP)” with “monolithic”,
“full-contour”, “solid”, “translucent”, “anatomic-contoured”,
“un-veneered”, “non-veneered”, “full-coverage” were used.
The literature search covered all years and focused on
publications that contained dental data regarding in vitro
studies, case reports, clinical studies and reviews. The
publications that used veneered zirconia, and the studies that
did not use zirconia material as a superstructure were excluded.
Full-text of the articles were obtained from different sources
and the abstracts in English were used which were written in a
different language instead of English.

Results
According to PubMed search, the total number of publications
that met the inclusion criteria for this review was 49. Of these,
28 were laboratory studies, 10 were case reports, 4 were
clinical studies, 4 were clinical aspects and techniques, 2 were
stress analyses, and 1 was a literature review article on a
special subject (wear).

Most of the studies were conducted in vitro [17,18,26-51].
Wear properties was investigated in 19 articles
[17,18,26,28-34,37,41,42,44,46-50], surface roughness in 9
articles [26,28,29,31,43,45,46,48,51], fracture strength in 6
articles [35,38,40,43,49,50], optical properties and color in 4
articles [7,36,39,50], and marginal fit in 1 article [27]. There
were 2 stress analyses [52,53] and 4 clinical aspects and
techniques [54-57]. There was only 1 review article about the
wear behavior of monolithic zirconia against enamel [58].
Other published articles were clinical studies [16,20,59,60] and
case reports [61-70].

In vitro studies
Wear: Wear means “loss of material from a surface” [44].
Wear of a material is related to several factors, such as
mechanical contact, surface roughness, grain size, fracture
toughness, occlusal load, temperature, chemical reactions,
environment and lubrication [34]. Surface conditions is one of
the most crucial factor, therefore, different kinds of surface
treatments should be applied on the restorative materials in
order to prevent damage of natural antagonist teeth [44].

There are two common surface treatment techniques for
monolithic zirconia, such as polishing (manual/machine) or
glazing (glass coating/firing) to improve the esthetic
appearance of the restoration and to obtain smooth surface
texture. Diamond points, rubber wheels and abrasive pastes are
used in polishing procedures. Glazing is performed by firing a
thin coating of glass on the surface or by firing the restoration
up to temperature required for glazing [7].
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The wear ability of monolithic zirconia was evaluated in 19
studies. (Table 1). According to Table 1, it can be clearly
observed that polished zirconia had the lowest wear on the
antagonists compared to glazed zirconia. This result was
attributed to the fact that glazed zirconia loses the thin glaze
after a short period of clinical function, with the result of
appearance of the rough and more abrasive surface of zirconia.
It was also stated that glazed layer is easily removed by chair-

side occlusal adjustments [47]. Only one study by Beuer et al.
[50] reported higher antagonist wear with a polished zirconia
than with a glazed zirconia. This difference was attributed to
polishing techniques that created as smooth as or smoother
than glazed surfaces in other studies. They concluded that
results might be different if other polishing techniques would
have been applied on zirconia surfaces.

Table 1: In vitro studies that examined the wear properties of monolithic zirconia.

Investigator Tested
materials Antagonist Zirconia system Surface of

zirconia Results of antagonist wear References

Sripetchdanond et al.

Monolithic
zirconia

Enamel Lava, 3M Polished Zirconia and resin<glass ceramic [34]Glass ceramic

Composite resin

Amer et al.

Monolithic
zirconia

Enamel Crystal Zirconia,
Crystal

Rough

Polished zirconia showed the lowest
wear [37]Lithium disilicate Polished

Feldspathic
ceramic Glazed

Preis et al.

Translucent
zirconia

Steatite Experimental

Polished

Polished, ground and repolished
zirconia showed the lowest wear [41]

Shaded zirconia Polished and
ground

Lithium disilicate Polished, ground
and repolished

Glazed

Kim et al.

Monolithic
zirconia Enamel Prettau,

Zirkonzahn

Polished

Zirconia showed the lowest wear

[42]Lithium disilicate Feldspathic ceramic Lava, 3M Enamel wear>Feldspathic ceramic
wear

Feldspathic
ceramic Rainbow, Dentium

Stawarczyk et al.

Monolithic
zirconia

Enamel Zenotec, Ivoclar

Glazed with
ceramic

Polished zirconia showed the lowest
wear [44]

Veneered
zirconia Glazed with spray

Metal alloy Manually polished

Mechanically
polished

Luangruangrong et al. Monolithic
zirconia Glass ceramic Diazir, Diadem

Glazed Glazed zirconia showed the highest
wear [46]

Machined

Kontos et al. Monolithic
zirconia Steatite Lava, 3M

Fired

Polished zirconia showed the lowest
wear [47]

Sandblasted

Ground

Polished

Glazed

Monolithic zirconia
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Sabrah et al. Monolithic
zirconia Synthetic hydroxyapatite Diazir, Diadem

Machined

Glazed zirconia showed the highest
wear [48]

Glazed

Ground

Polished

Preis et al.

Monolithic
zirconia

Steatite Cercon, Dentsply

Sintered Monolithic zirconia<veneered
zirconia

[49]

Veneered
zirconia Glazed Polished, ground and repolished

zirconia showed the lowest wear

Sandblasted and
glazed

Polished and
ground

Polished, ground
and repolished

Beuer et al.

Monolithic
zirconia

Stainless steel Zenotec, Ivoclar

Polished
Polished zirconia showed the highest

wear*** [50]
Veneered
zirconia Glazed

Janyavula et al.

Monolithic
zirconia

Enamel Zenotec, Ivoclar

Polished

Polished zirconia showed the lowest
wear [26]Veneering

ceramic Glazed

Enamel Polished and
glazed

Mörmann et al.

Monolithic
zirconia

Enamel InCoris TZI, Sirona Polished Monolithic zirconia showed the
lowest wear [28]

Lithium disilicate

Leucite glass

Feldspathic
ceramic

Hybrid ceramic

Composite resin

PMMA

Enamel

Mitov et al.

Monolithic
zirconia

Enamel Everest ZH, Kavo

Polished

Polished zirconia showed the lowest
wear [29]Leucite glass Ground

Glazed

Jung et al.

Monolithic
zirconia

Enamel Prettau,
Zirkonzahn

Polished
Polished zirconia showed the lowest

wear [30]
Feldspathic

ceramic Glazed

Preis et al.

Monolithic
zirconia Enamel Cercon, Dentsply Polished

Polished, ground and repolished
zirconia showed no wear [31]Feldspathic

ceramic Steatite Lava, 3M Polished and
ground

Polished, ground
and repolished
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Preis et al.

Monolithic
zirconia Enamel

Zenotec, Ivoclar Glazed Monolithic zirconia<other groups [17]

Veneered
zirconia Steatite

Feldspathic
ceramic

Enamel

Rosentritt et al.

Monolithic
zirconia Enamel

Prettau,
Zirkonzahn Glazed Monolithic zirconia<other groups [18]

Veneered
zirconia Steatite

Feldspathic
ceramic

Lithium disilicate

Glass infiltrated
ceramics

Enamel

Albashaireh et al. Monolithic
zirconia

Lithium disilicate

Zenotec, Ivoclar Polished Monolithic zirconia<other groups [32]
Leucite glass

Fluorapatite glass

Nanofluorapatite glass

Park et al.

Monolithic
zirconia

Enamel

Prettau,
Zirkonzahn Polished Monolithic zirconia<feldspathic

ceramic
[33]

Feldspathic
ceramic

Zenotec, Ivoclar
ZirBlank, BruxZir Glazed Glazed zirconia>polished zirconia

Surface roughness: Preparing a smooth surface for ceramic
restorations is considered as an important step because
increased surface roughness associated with improper surface
treatment can increase wear rate of the opposing teeth and can
compromise the clinical performance of the restorations
[71,72].

The surface roughness of monolithic zirconia was evaluated in
9 studies. Ghazal et al. [51] evaluated the effect of surface
roughness of zirconia on the wear of antagonist enamel and
composite resin, and found that an increase in the surface
roughness significantly increased the wear of enamel and
composite resin. They also reported that the maximum surface
roughness of zirconia should not be greater than 0.75 µm.
Alghazzawi et al. [43] found that surface roughness of polished
monolithic zirconia was significantly increased with aging
procedures, because the volume expansion associated with the
phase transformation (tetragonal to monoclinic) during LTD
leaded to grain pushout that imparted the surface roughening.
Mörmann et al. [28] stated that the gloss of zirconia was
slightly increased and the roughness was decreased after
toothbrushing. Preis et al. [31] reported that smoother surfaces
were obtained with the polished zirconia compared to ground
zirconia. Hmaidouch et al. [45] investigated the effect of
controlled intraoral grinding and polishing on the roughness of
monolitic zirconia and compered it to veneered zirconia in
their study. They reported that fewer defects and lower

roughness values were obtained in monolithic zirconia
compared to veneered zirconia. In addition, they found that
lower roughness values were achieved after polishing
compared to glazing procedure. It was showed in another study
that [46], machined zirconia had higher surface roughness than
glazed zirconia. Similarly, the glazed surface was found
smoother than polished and ground surface [48].

However, controversial results have been obtained in other
studies [26,29]. Janyavula et al. [26] found that the polished
surfaces of monolithic zirconia were smoother than glazed
surfaces. It was stated by Mitov et al. [29] that polished
zirconia showed a lower surface roughness than glazed and
ground zirconia. These differences may be due to the different
polishing (machine or manual) and glazing (glass coating,
firing) techniques, or different study protocols. It was known
that machine polishing results in a significantly higher surface
gloss of ceramics than manual polishing with tools for intraoral
polishing [73].

Fracture strength: Fracture strength was investigated in 6
articles. In a study by Zesewitz et al. [35], zirconia showed the
highest strength when luted with adhesive resin or glass-
ionomer cements, compared to lithium disilicate and
feldspathic ceramics. Similar results were obtained with Zhang
et al. study [40]. In another study by Sun et al. [38], monolithic
zirconia crown with a thickness of 1 mm was found equal to
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metal-ceramic crowns. It was also reported that strength of
monolithic zirconia was higher than veneered zirconia, lithium
disilicate and metal-ceramics. These results are in agreement
with the study by Beuer et al. [50] that has reported monolithic
zirconia had higher strength than veneered zirconia. On the
contrary, the strength of monolithic and veneered zirconia was
found similar in Preis et al. study [49]. Alghazzawi et al. [43]
found that the strength values were not altered significantly
between aged and non-aged monolithic zirconia crowns. As a
result of these studies, it can suggest that monolithic zirconia
that has a promising future may be an alternative to traditional
veneered zirconia.

Optical properties: The creation of acceptable esthetic result
with monolithic zirconia restorations is challenging because
they are mono-layered restorations. Application of coloring
liquids, surface characterization, glazing and polishing of
zirconia are the procedures to look like natural teeth [36].
Significantly improved color adaptation to adjacent teeth is
accomplished with coloring of the monolithic zirconia
structures, followed by individual color characterizations
achieved by surface painting. The coloring liquids with
different color intensities are applied with a paintbrush prior to
sintering [54].

The translucency of the monolithic zirconia restoration is also
essential for optimized esthetic outcome. However, an increase
in crystalline content and framework thickness in order to
achieve high strength would generally result in lower
translucency. Zirconia has higher contrast ratio compared to
glass ceramics, and can be clinically applied with a minimum
thickness of 0.4 mm [74].

There are few studies in the literature reporting optical
properties and color of monolithic zirconia. In a study by Kim
et al. [36] the effect of number of coloring liquid applications
on color, translucency and opalescence of monolithic zirconia
was investigated. The increased number of coloring liquid
applications reduced the lightness and opalescence. Sari et al.
[39] reported that transmission of Er:YAG laser through
monolithic zirconia was lower than leucide and lithium-
disilicate reinforced glass ceramics. In another study by Kim et
al. [7] it was found that polishing and glazing procedures
decreased lightness, glazing increased yellowness, and
increased number of coloring liquid applications made zirconia
darker and more yellowish. When compared polished and
glazed monolithic zirconia with veneered zirconia, it was
stated that polished zirconia showed higher light translucency
[50].

Marginal fit: Karl et al. [27] investigated the quality of fit of
zirconia crowns and they found that monolithic zirconia
showed greater passivity of fit than veneered zirconia. They
showed that ceramic veneering of zirconia frameworks resulted
in an increase in strain development. Monolithic contour
restorations exhibited less strain.

Stress analyses studies
There are 2 studies in the literature regarding stress analyses of
monolithic zirconia [52,53]. In the first study [52], the fracture
load of zirconia was found 1.8 times greater than lithium
disilicate when supported by dentin and 1.3 times greater than
lithium disilicate when supported by enamel. In the second
study [53] monolithic crown systems (zirconia, alumina, metal,
all porcelain) were compared with the veneered crowns
(zirconia, alumina, metal) in terms of compressive stress. For
monolithic systems, the all porcelain showed the highest
concentration of compressive stresses followed by zirconia,
alumina and metal.

Clinical studies
Four articles were included in the clinical follow-up studies
associated with monolithic zirconia [16,20,59,60]. Batson et al.
[59] fabricated a total of 32 monolithic zirconia, metal ceramic
and lithium disilicate posterior single crown restorations in 22
patients and evaluated them at the 6-month visit. They
observed that monolithic zirconia crowns were superior in
occlusion (only 20% needed adjustment) and marginal
adaptation (least amount of horizontal marginal discrepancy).
In another study, clinical complications and survival rates of
implant supported monolithic zirconia fixed dental prosthesis
in 17 edentulous patients at the 12 month visit [20]. Prosthesis
survival was 88%. One of the prosthesis was fractured and the
other prosthesis was removed due to the implant failure. In a
clinical study by Wang et al. [60], esthetic, wear and fracture
were evaluated in 35 monolithic zirconia crowns in 30 patients
after 24-month visit. No fracture was found, the esthetic was
satisfactory but antagonist enamel wear was observed. Stober
et al. [16] evaluated the enamel wear caused by 20 monolithic
zirconia crowns in 20 patients after 6 months of clinical use,
and found that zirconia crowns caused greater wear of opposed
enamel compared to natural teeth. Although the enamel wear
was greater than natural teeth, previous studies [75,76] claimed
that the wear is lower than or comparable with other ceramic
restorations such as metal-ceramics, alumina and glass-
ceramics. Therefore, further clinical evaluations of wear with
various ceramic crown systems and over a longer time period
should be conducted.

Discussion
Nowadays, monolithic zirconia has become popular because of
their high flexural strength, natural tooth color, less wear on
the antagonists, and minimum tooth preparation [8,16]. For the
patients with compromised occlusion or parafunction,
monolithic zirconia crowns may be fabricated with as little as
0.5 mm of occlusal reduction [19]. It is possible to produce
CAD/CAM-milled monolithic zirconia restorations with the
new digital impression technology such as CEREC (Sirona
Dental Systems) or Lava Chairside Oral Scanner (3M ESPE)
[8]. The color of the restoration is homogeneous and there is no
need for concern about opaque show-through during
adjustment of the occlusion. It is also easy to shape and polish
the material using porcelain-polishing materials [36,54].
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Zirconia has been considered an opaque material compared to
other all ceramics, but more esthetic alternative to porcelain
fused to metals (PFMs) or cast gold restorations, in the areas
with limited occlusal spaces [74]. The translucency of
monolithic zirconia should be improved to make it a restorative
option in the anterior region as well. The cementation is either
adhesive or conventional [24,25].

This article reviewed the outcomes of laboratory and clinical
studies of monolithic zirconia. The number of the articles was
limited because this material has been used in a short time
compared to other materials used in prosthodontics
restorations. Most of the clinical studies had short follow-up
periods ranging from 6 to 24 months. However, the solutions
of the clinical complications of this material were not be
pointed. Therefore, clinicians should be careful about the
indications and limitations when making decisions regarding
monolithic zirconia. According to results of the in vitro studies,
it can be clearly seen that polished monolithic zirconia surfaces
caused the lowest wear on the opposing teeth compared to
glazed zirconia surfaces [58]. The wear is affected by the
surface roughness, and machine polishing technique seems to
be more successful in this manner, because the glaze layer is
removed during the wear process. When considered the
fracture strength of the material, it was found better than
veneered zirconia [38,50].

Conclusions
This paper reviewed the available literature on monolithic
zirconia restorations. Monolithic zirconia is emerging as a
promising option. Many in vitro studies on monolithic zirconia
have been published to date; however, clinical long-term
evaluation is crucial and mandatory to a more thorough
understanding of the mechanical behavior and reliability of
these restorations. LTD in non-veneered zirconia restorations
may cause severe clinical problems after several years of
clinical service. As an alternative monolithic ceramic material
to zirconia, lithium disilicate may be used in the clinical
practice, which longer-term clinical data have been already
published [77-80]. The authors believe that before monolithic
zirconia crowns are used widely and prevalently in dental
practice, studies of longer duration are necessary to validate
this material. Despite the reported advantages and short-term
favorable clinical reports, long-term follow-up studies of at
least 10 years should be conducted. These studies will provide
the much-needed data pertaining to the efficacy of zirconia
material for full-contour restorations.
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