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Abstract

COT (Tpl2/MAP3K8) is a serine/threonine kinase that plays a major role in the TNF-alpha production
through MEK, ERK pathway and the production of other pro-inflammatory cytokines such as IL-1
beta. It's crucial role in inflammatory diseases and cancer, for finding out the best potent anticancer
agent glide tool of the Schrodinger software was used for virtual screening using ligand databases like
Drug Bank, MDPI and MayBridge Hitfinder against the target protein. The best compound was
identified which can bind in the active site fully and showing good docking score as well as good
pharmacokinetics characteristics. ADMET, MM-GBSA and DFT analysis was also done on the selected
screened compounds. The compound 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1H-indol-2-yl)-1H-
indazole-6-carbonitrile (DB07075) was found to be most potent among all the screened compounds.
Hopefully compound (DB07075) could be used as anti-cancer agent against cancer, rheumatoid arthritis
and various death leading diseases.
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Introduction
Protein kinases play a very vital role in the cell biology where
it can modify the functioning of a protein in the cell. Protein
phosphorylation is a process which can increase or decrease
the enzyme activity to alter the cellular processes like
transcription and translation and play a major role in signal
transduction pathways which can activate other protein to be
functioned. Dysregulation of the protein kinases is related with
many diseases such as cancer and inflammatory disorders
[1,2].

One of the protein kinase is Cancer Osaka Thyroid Kinase
which is a Mitogen Activated Protein Kinase 8 (MAP3K8)
(Figure 1). It involve to regulate various signaling pathways
like cell survival, cell proliferation and cell death as well as
various inflammatory pathways including ERK, JNK, p38, NF-
κB and plays an important role in the immune system also.
COT kinase activation has been done with various pro-
inflammatory stimuli like Lipopolysaccharide (LPS), TNF,
CD40 ligand through Toll-Like Receptors (TLRs), TNF
receptor 1, CD40 and Interleukin (IL-1) receptor [3]. COT
kinase plays an important role for the activation of the
downstream pathway like MEK/ERK with the stimulation of

the pro-inflammatory receptors IL-1/TNF/TLR, belongs to the
receptor super families, while MAP3K Tak1 facilitate to
activate the p38, JNK and NF-kB pathways (Figure 2). Talking
about the structure configuration, COT kinase forms a
heterotrimeric complex together with NF-kB1 precursor
protein p105 and the ubiquitin-binding protein ABIN-2. Its
activation depends on the IKKB which triggers proteasomal
degradation of p105 and releases the ABIN-2 from the
association with p105 and COT [4-6].

COT kinase involvement in various diseases like papillary
thyroid cancer [7], breast cancer [8-11], ovarian cancer [12],
multiple sclerosis [13], obesity-induced adipose tissue
inflammation [14], liver injury [15], metastasis of clear cell
renal cell carcinoma [16], androgen depletion-independent
prostate cancer growth [17], obesity [18], pancreatic and lung
inflammations [19].

In the literature study we have found the inhibitors like
indazoles [20], thieno (2, 3-c) pyridine [21,22], 4-alkylamino-
(1, 7) naphthyridine-3-carbonitriles [23], 8-substituted-4-
anilino-6-aminoquinoline-3-carbonitriles [24], 1, 7-
naphthyridine-3-carbonitriles [25], substituted indolyl
indazoles [26].
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Figure 1. (a) COT Kinase 3D diagram with the active site in red box
represented by using PyMOL visualization software. (b) Ligand
protein interaction diagram. (c) COT Kinase secondary structure
diagram shows helix, sheets and turns. (d) Ligplot interaction
diagram. (e) Ramachandran plot of COT kinase complex with their
statistical data. (f) Domain topology diagram of the COT kinase.

Figure 2. Mechanism of the activation of the Cot kinase and further
activation of the MEK and ERK signaling pathway and inactivation
process followed by screened inhibitors shows in red box.

Nowadays the challenge is to find out the small molecule
cancer drugs [27,28]. Structure based drug design is the
accurate approach for the development of cell cycle inhibitor
for cancer therapy. SBVS technique is very important to find
out the drug compound very rapidly from the large library of
the compounds in the medicinal chemistry research [29]. COT
is the most important therapeutic target for cancer research
[30]. A lot of inhibitors have been approved which shows
inhibition of cancer progression. Therefore, it is a most
important work to find out a selective and novel inhibitor,
which can recognize the target active site easily for reducing its
infectious properties. In this current study the central aim is to
find out a selective and most potent inhibitor for reducing the

death leading diseases like cancer, cardiac hypertrophy and
Alzheimer’s.

Material and Methods

Retrieval and preparation of the protein structure of
COT kinase
The 3D structure of the COT kinase as receptor (PDB ID:
4Y83) was retrieved from the protein data bank (http://
www.rcsb.org/pdb/home/home.do). Protein preparation wizard
of the Schrodinger software has been used for preparing the
protein structure where bond orders were assigned and
hydrogen atoms were added as well as restrained minimization
step has also been done using OPLS force field with RMSD
cut off of 0.30 A0.

Ligand preparation
Total 62,801 small molecules of the ligand were retrieved from
Drug Bank database (http://www.drugbank.ca/), MayBridge
HitFinder database (http://www.maybridge.com/portal/
alias__Rainbow/lang__en/tabID__229/DesktopDefault.aspx,
and MDPI database (http://www.mdpi.org/cumbase.htm).
LigPrep module of the Schrodinger software was used for
preparing all the retrieved Ligands where bond order and the
bond angle were assigned as well as minimization was done by
using OPLS-2005 force field. The Epik option was used for
keeping ligand in the correct protonation state [31].

Grid preparation
The generation of the Grid of the receptor protein was done
using the Glide protocol of the Schrodinger software where the
reference ligand binding site was selected as centroid for Grid
where on the active site the screened ligand bind. Scaling
factor was selected as 1.0 and the partial charge cut-off was
selected as the 0.25 [32].

Preparation of the reference compounds
The reference ligand compounds were retrieved from the co-
crystallized structure of the protein-ligand structure complex
(Figure 3), which is available in the protein data bank (PDB Id:
4Y83) (http://www.rcsb.org/pdb/explore/explore.do?
structureId=4Y83). The reference compounds were prepared
using a LigPrep module of the Schrodinger software and
docked with the prepared receptor structure. This docking
score of the reference compounds kept for comparing with the
best potent compounds of the Drug Bank, MDPI and
MayBridge HitFinder database.

Virtual screening
High throughput virtual screening is a bioinformatics technique
where we can screen a huge number of ligands against the
target protein rapidly. A total number of 62,801 ligand
compounds were retrieved from the Drug Bank, MDPI and
MayBridge HitFinder databases. The reference compounds
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were also incorporated in the ligand database. These
compounds and the reference compounds were subjected to the
Lipinski filtration and reactive functionality. The Glide maestro
protocol of the Schrödinger software was used for the virtual
screening. Docking was performed in the three different phases
like HTVS (High Throughput Virtual Screening), SP
(Standard-Precision), XP (Extra-Precision). The library
contains a large number of compounds so that after performing
HTVS screening remaining 10% was performed using the
Standard-precision docking, and remaining 10% was
performed using the Extra-precision docking for getting the
best potent compounds. The virtual screening workflow is
shown in (Figure 4).

Figure 3. Co crystallized inhibitor found in the Protein Data Bank
with their Ligplot interaction diagram.

Density functional theory analysis
It is also very essential to find out the molecular orbital energy
of the selected ligand. For this study HOMO, LUMO
molecular orbital energy analysis was done. The gap energy is
defined as difference between HOMO and LUMO molecular
orbital energy, that energy indicates the excitation energy as
well as showing the stability and reactivity of the compounds
[33].

Drug like properties analysis
The best potent compounds were selected for finding the drug
like properties. These properties follow the Lipinski’s rule of
five. The properties which have been considered such as
Molecular Weight (MW), Hydrogen Bond Acceptor (HBA),
Lipophilicity (log P), Hydrogen Bond Donor (HBD), human
oral absorption [34].

ADMET profiles analysis
ADMET properties of the compounds are related to absorption,
distribution, metabolism, excretion and toxicity through the
human body. The ADMET profile is very essential for
evaluating the pharmacodynamic activities of the ligand

compounds. In this study we have used the bioinformatic tool
admetSAR (http://lmmd.ecust.edu.cn:8000/) [35].

MM-GBSA approach for drug-target binding energy
estimation
Molecular mechanics generalized born surface area is used to
finding the drug-target binding energy and it was calculated by
using Schrodinger software. This binding energy estimates the
stability of the protein with the ligand complexes [36].

Figure 4. Virtual screening workflow.

Result and Discussion

Database screening and docking against the target
Total eleven potent novel lead compounds were found from
different databases like Drug Bank, MDPI and MayBridge
HitFinder using virtual screening and docking approach against
the target protein, which showed best docking score.

Compound DB07075 was found to be more potent and
selective, which interacts with the target protein active site
residues. It makes H-bonding with residues GLY 210, GLU
208, ASP 270, and GLU 220, Pi-Pi stacking with TRP 132,
ARG 146 and hydrophobic interaction with LEU 134, LEU
216, PRO 145, ILE 144, VAL 269, VAL 152, ALA 209, ALA
165, ALA 191 with docking score -14.860. The docking score
is high and it covered the reference ligand binding site

Molecular docking and in silico ADMET study reveals 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-
yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase
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completely. It means this lead compound tightly docked in the
active site of the target protein and showing good inhibition
property. The docking score for DB07075, DB01940,
DB07025, DB02224, DB01094, DB08009, MDPI 15603,
MDPI 15661, MDPI 15605, MayBridge 13092 and MayBridge
10963 has been identified (Table 1). The docking and ligPlot
interaction diagram gives a better view of interaction between
target and lead compounds (Figures 5 and 6). The docking
score comparisons graph also shown the better comparisons
(Figure 7).

Figure 5. Screened chemical structure with their molecular formula
and molecular weight.

The series, according to decreasing docking scores is as
follows:

DB07075>DB01940>DB07025>DB02224>MDPI15603>MD
PI15661>DB01094>DB08009>MDPI15605>MayBridge1309
2>MayBridge10963>Reference_ligand

HOMO LUMO stability analysis of the screened
compounds
HOMO LUMO stability analysis was done on selected best
potent ligand compounds which show drug and protein
interaction stability and contribution of selected inhibitors
(Table 2). All the selected ligand showed minimal HOMO-
LUMO gap with the average energy difference of 0.14 eV,
signifying molecular reactivity. The orbital energy and the
difference between HOMO and LUMO energy (gap energy)
were estimated. HOMO LUMO energy of the inhibitor
DB07075 (-0.35210, -0.26869) and remaining inhibitor
DB01940 (-0.27794, -0.15153), DB07025 (-0.34105,
-0.27646), DB02224 (-0.21787, -0.05554), DB01094
(-0.20716, -0.05019), DB08009 (-0.26440, -0.13994), MDPI
15603 (-0.20165, -0.05099), MDPI 15661 (-0.19274,

-0.04465), MDPI 15605 (-0.19934, -0.05680), MH 13092
(-0.19795, -0.05815), MH 10963 (-0.21486, -0.04716). The
lowest energy gap was found for DB07075 (0.08341) and
DB07025 (0.06459). HOMO energy is higher compared to
LUMO energy for all ligand which represent an ability to
donate the electrons rather than accept electrons with their
partner receptor binding site region.

Figure 6. (a) Binding mode of compound DB07075 into the active site
of COT kinase with their LigPlot interaction diagram. b) Binding
mode of compound DB01940. c) Binding mode of the Ligand
DB07025. d) Binding mode of the Ligand DB02224. e) Binding mode
of the Ligand DB01094. f) Binding mode of the Ligand DB08009. g)
Binding mode of the Ligand MDPI15603. h) Binding mode of the
Ligand MDPI15661. i) Binding mode of the MDPI15605. j) Binding
mode of the MH13092. k) Binding mode of the MH10963. The
inhibitors have been shown in stick form and yellow dotted lines
indicate the inhibitor protein H-bonding. The critical protein residues
have been shown in white color.

Drug-likeliness property analysis against screened
compounds
These selected ligand compounds were evaluated for the drug
likeliness properties. These selected hits followed Lipinski’s
rule of five. Evidence for drug like characteristics. A good drug
compound is recognized which shows effective metabolism,
action and absorbed in record time and well distributed
throughout the system. The QikProp tool of the Schrodinger
software was used to evaluate the drug-likeliness property
analysis. Our selected various properties such as Molecular
Weight (MW), Total solvent accessible surface; Hydrogen
Bond Acceptor (HBA), Hydrogen Bond Donor (HBD),
Predicted aqueous solubility (QP log S) and Human oral
absorption were assessed. The lower molecular weight is an
indication of better absorption of the drug compounds. A Log
S value represents solubility, the lesser the Log S value means
higher the solubility, which would enhance the absorption
property. Lower the total solvent accessible surface was
favorable for drug like properties. The chemical name of these
eleven lead molecules with their corresponding Drug Bank Id
and MDPI database Id and MayBridge HitFinder database Id
has been given to their chemical properties (Table 3).

ADMET prediction
The admetSAR server was used to find out the ADMET
properties of the selected drug compounds. HIA probability,
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Caco-2 probability, AMES test and carcinogenicity and Rat
acute toxicity prediction. HIA represent the human intestinal
absorption score. The compound was having high score would
be absorbed better in the intestinal tract upon oral
administration. BBB represents the blood brain barrier which
should be high, the higher the BBB better the penetration.
AMES test was performed to find out that the compounds were
mutagenic or not. We found that all the compounds showed
non-toxic properties except one. Carcinogenicity also reveals
that all the compounds are non-carcinogens. A compound with
a lower LD50 is more lethal than the compound having higher
LD50. Predicting the efflux by P-glycoprotein (P-gp)
metabolism of the drug compounds is carried out by a family
of microsomal enzymes known as cytochrome P450
(CYP450). The two most important members are CYP3A4 and
CYP2D6 which are represented in Tables 4 and 5.

Drug-target binding energy analysis against screened
compounds
Prime MM-GBSA (GB stands for Generalized Born) module
of the Schrodinger software is very useful for finding out the
protein-ligand binding affinity. The selected protein-ligand
complexes were subjected to that module. It combines OPLS
Molecular Mechanics Energies (EMM), surface generalized
born solvation model for polar salvation (GSGB), and a
nonpolar solvation term (GNP). The total free energy of
binding calculation as:

ΔG bind=G complex-(G protein+G ligand) → (1)

ΔG bind: total binding free energy of complex

G complex: total energy of the complex

G protein: energy of the receptor without ligand

G ligand: energy of the unbound ligand

Where G=EMM+GSGB+GNP → (2)

The binding free energy estimated for Drug Bank, MDPI,
MayBridge HitFinder selected compounds as complexes (Table
6).

Superimpose structure
The docked pose of Drug Bank hit, MDPI hits and MayBridge
HitFinder hits occupy the active binding site. It was
superimposed on crystal structure (PDB ID: 4Y83) that occupy
this region, The binding pattern of Drug Bank hits, MDPI hits
and MayBridge HitFinder hits were found to be similar to that
of the reference binding site. The figure clearly indicates that
the proposed binding pose is well occupied in the active site of
COT kinase complex and has a binding pattern similar to that
of reference ligand (Figure 8).

Figure 7. Docking score of the screened ligands compared with the
reference ligand.

Figure 8. Selected inhibitors after screened DrugBank, MDPI,
Maybridge HitFinder database has been superimposed in the active
site of the target protein.

Conclusion
Identification of the novel and potential lead compound is step
by step procedure. A range of computational tools and
techniques were used to discover best inhibitors. A very large
number of drugs library were subjected for the screening
against the target compound (COT kinase Complex). This
structure based virtual screening helped us to reduce the
number of compounds which shows the greatest binding
affinity to the target and showing the best inhibitory properties.
Drug likeliness properties calculated by the Lipinski filter, after
using virtual screening and docking using Schrodinger
software, the best 11 compounds found promising. Among all
compound 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1h-
indol-2-yl)-1h-indazole-6-carbonitrile was found to be more
potent and selective. These all compounds showing the binding
where the reference co-crystallized ligand bind in the hinge
region. It is obvious that these hits could be as potent and
selective anticancer agent of Cancer Osaka Thyroid Kinase
complex.

Table 1. 2D structure of the selected inhibitors from DrugBank, MDPI and MayBridge HItFinder databases and reference compounds respectively
with their docking scores.

Compound Compound structure Mol. Wt. Mol. formula Docking score

Molecular docking and in silico ADMET study reveals 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-
yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase
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Hit 1 DB07075 384.483 C23H24N6 -14.86

Hit 2 DB01940 474.512 C27H26N2O6 -13.304

Hit 3 DB07025 386.496 C24H26N4O -12.673

Hit 4 DB02224

 

304.256 C15H12O7 -12.49

Hit 5 DB01094 302.283 C16H14O6 -11.92
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Hit 6 DB08009 414.934 C22H27ClN4O2 -11.685

Hit 7 MDPI 15603 311.34 C18H17NO4 -12.408

Hit 8 MDPI 15661 311.34 C18H17NO4 -12.335

Hit 9 MDPI 15605 311.34 C18H17NO4 -11.525

Hit 10 MH 13092 290.317 C15H18N2O4 -11.491

Molecular docking and in silico ADMET study reveals 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-
yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase
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Hit 11 MH 10963 302.281 C16H14O6  

5-(2-amino-5-(quinolin-3-
yl)pyridin-3-yl)-1,3,4-
oxadiazole-2(3H)-thioner

 - - - -11.1403

r=reference compound.

Table 2. Orbital energy of the selected inhibitors of the DrugBank,
MDPI and MayBridge HItFinder databases.

S. no. Compound ID HOMO energy LUMO energy HLG

1 DB07075 -0.3521 -0.26869 0.08341

2 DB01940 -0.27794 -0.15153 0.12641

3 DB07025 -0.34105 -0.27646 0.06459

4 DB02224 -0.21787 -0.05554 0.16233

5 DB01094 -0.20716 -0.05019 0.15697

6 DB08009 -0.2644 -0.13994 0.12446

7 MDPI 15603 -0.20165 -0.05099 0.15066

8 MDPI 15661 -0.19274 -0.04465 0.14809

9 MDPI 15605 -0.19934 -0.0568 0.25614

10 MH 13092 -0.19795 -0.05815 0.1398

11 MH 10963 -0.21486 -0.04716 0.1677

Table 3. Drug-like properties of the selected inhibitors from DrugBank, MDPI and MayBridge HItFinder databases.

S. no. Compound Ida Mol. Wt.b SASAc Human oral absorptiond HB donore HB acceptorf QP log Sg

1 DB07075 384.483 716.679 54.797 4 6 -4.593

2 DB01940 474.512 798.629 67.044 3 9 -5.017

3 DB07025 386.496 719.51 71.653 3 5 -4.284

4 DB02224 304.256 514.08 52.196 4 7 -2.67

5 DB01094 302.283 541.774 75.467 2 5 -3.782

6 DB08009 414.934 769.425 94.926 2 6 -5.745

7 MDPI15603 311.34 566.422 94.53 2 5 -3.938

8 MDPI15661 311.34 575.036 92.168 2 5 -4.084

9 MDPI15605 311.34 563.412 100 2 5 -3.887

10 MH13092 290.317 556.494 96.106 1 4 -3.922

11 MH10963 302.281 536.82 75.956 2 5 -3.699

aCompound Id; bMolecular weight (acceptable range is: ≤ 500)’; cTotal solvent accessible surface area (acceptable range is: 300-1000); dHuman oral absorption
(acceptable range is:<25% less and >80% high); eHydrogen bond donor (acceptable range is: ≤ 5); fHydrogen bond acceptor (acceptable range is: ≤ 10); gPredicted
aqueous solubility (acceptable range is: -6.5-0.5).

Table 4. In-silico absorption and toxicity profile obtained from admetSAR server.

S. no. Ligand BBB probability HIA probability Caco-2
probability

AMES test Carcinogenicity Rat acute toxicity (LD50:
mol/kg)

1 DB07075 0.8541 0.9671 0.6352 Non-toxic Non-carcinogen 2.5786
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2 DB01940 0.7306 0.9139 0.6892 Non-toxic Non-carcinogen 2.4425

3 DB07025 0.894 0.9647 0.6532 Non-toxic Non-carcinogen 2.5263

4 DB02224 0.5711 0.965 0.8957 Non-toxic Non-carcinogen 3.02

5 DB01094 0.6591 0.9511 0.8286 Non-toxic Non-carcinogen 3.1455

6 DB08009 0.6782 0.8536 0.59 Non-toxic Non-carcinogen 2.684

7 MDPI15603 0.7797 0.8359 0.7444 Non-toxic Non-carcinogen 2.5097

8 MDPI15661 0.8307 0.8628 0.7785 Toxic Non-carcinogen 2.6928

9 MDPI15605 0.7453 0.9394 0.7199 Non-toxic Non-carcinogen 2.2957

10 MH13092 0.8661 0.9743 0.5332 Non-toxic Non-carcinogen 2.4772

11 MH10963 0.6591 0.9511 0.8286 Non-toxic Non-carcinogen 3.1455

BBB: Blood Brain Barrier; value closer to 1 represents better permeability through BBB; (2) HIA: Human Intestinal Permeability; value closer to 1 represents better
absorption through intestine; (3) Caco-2: Human Intestinal Cell Line used for in-silico simulation; (4) AMES Test is done to detect a probable mutagen. A positive toxicity
indicates the molecule for being a probable mutagen. (5) Carcinogenicity indicates the cancer causing ability of a molecule. (6) LD50: Lethal Dose 50 i.e., the amount of a
drug which could kill 50% of the population of the organism on which it is being tested (here rat).

Table 5. In-silico distribution profile obtained from admetSAR server.

S.
no.

Ligand P-gp substrate/
inhibitor
probability

CYP-2C9
substrate/inhibitor

CYP-2D6
substrate/inhibitor

CYP-3A4
substrate/
inhibitor

CYP-1A2
substrate/
Inhibitor

CYP-2C19
inhibitor

CYP inhibitory
promiscuity

1 DB07075 Substrate/Inhibitor Non-substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Non-Inhibitor

Non-Inhibitor Non-Inhibitor High

2 DB01940 Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Non-Inhibitor

Non-Inhibitor Non-Inhibitor Low

3 DB07025 Substrate/Inhibitor Non-substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

substrate/Inhibitor Inhibitor Non-Inhibitor High

4 DB02224 Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

Inhibitor Non-Inhibitor High

5 DB01094 Substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

Non-substrate/
Inhibitor

Non-substrate/
Inhibitor

Inhibitor Inhibitor High

6 DB08009 Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

substrate/Non-
Inhibitor

Non-Inhibitor Non-Inhibitor Low

7 MDPI156
03

Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

substrate/Inhibitor Inhibitor Inhibitor High

8 MDPI156
61

Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

substrate/Inhibitor Inhibitor Inhibitor High

9 MDPI156
05

Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

Non-substrate/
Inhibitor

Inhibitor Inhibitor High

10 MH13092 Substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

Non-substrate/Non-
Inhibitor

substrate/Non-
Inhibitor

Non-Inhibitor Non-Inhibitor Low

11 MH10963 Substrate/Non-
Inhibitor

Non-substrate/
Inhibitor

Non-substrate/
Inhibitor

Non-substrate/
Inhibitor

Inhibitor Inhibitor High

Table 6. Prime MM-GBSA energy calculation result of the selected inhibitors from DrugBank, MDPI and MayBridge HItFinder databases.

S. no. Compound Ida ΔG bindb Gevdwc Gcould Gcovalente GsolGBf GsolLipog

1 DB07075 -97.78 -52.35 -78.22 8.56 83.69 -55.98

2 DB01940 -96.74 -55.13 -55.51 10.4 60.24 -53.89

3 DB07025 -91.61 -42.68 -77.7 8.61 82.52 -59.33

Molecular docking and in silico ADMET study reveals 3-(5-{[4-(aminomethyl) piperidin-1-yl] methyl}-1h-indol-2-
yl)-1h-indazole-6-carbonitrile as a potential inhibitor of cancer Osaka thyroid kinase
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4 DB02224 -74.52 -36.8 -18 1.23 18.87 -37.46

5 DB01094 -93.6 -40.84 -31.58 5.15 18.15 -41.49

6 DB08009 -102.46 -49.06 -39.54 7.65 48.33 -67.83

7 MDPI15603 -96.2 -45.22 -17.23 3.56 14.07 -48.48

8 MDPI15661 -104.57 -46.48 -30 4.37 19.7 -48.98

9 MDPI15605 -78.77 -42.3 -11.26 7.27 17.66 -47.99

10 MH13092 -79.61 -45.64 -10.61 11.38 11.24 -44.34

11 MH10963 -80.23 -34.82 -25.33 8.19 16.08 -41.19

aCompound Id; bFree binding energy; cVan der Waal energy; dCoulomb energy; eCovalent; energy (internal energy); fGeneralized born electro-static solvation energy;
glipophilic energy (nonpolar contribution estimated by solvent accessible surface area).
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