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Abstract

Infectious diseases are threatening the people’s life because it spreads easily and its impacts are more
dangerous. Government should take a necessary action to control the spread of the diseases and
implement the prevention policies to secure people. Agent based and compartment simulation models
are used for the epidemic disease outbreak. Compartment models are better than the agent based model
for quick estimating and require less computer resources. The compartment model is consists of
ordinary differential equations, which is used to analyse people behaviours and the spread of the disease.
The goal of this study is to develop a new SIR based model for epidemic diseases. A proposed model
extended the idea of SELMAHRD model. The model idea is to combine SIjRS and SELMAHRD models.
In addition, Multi-hidden layer neural network with non-multiplier is also used in this paper to learn
the spread of disease of disease dynamics.
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Introduction
The SIR (Susceptible, Infected, and Recovered) model was
developed by Kermack et al. [1]. People are classified into
three groups in the SIR model, which includes susceptible
people, infected people and recovered people. This model
having the following assumptions: the total population is fix,
people death due to disease are not considered, and age and
population structure is not included as well [1]. Differential
equations are used to formulate the reproduction number. If
reproduction number is greater than one the disease spread,
else disease dies out. SIjRS (Susceptible, Infected (worm,
virus, Trojan), Recovered) model is developed from the SIR
model [2]. Here, infected compartment is divided into three
compartment, those are worm infected, virus infected and
Trojan horse infected. SIjRS model for the transmission of
malicious objects with simple mass action incidence in
computer network [3]. Numerical methods have been used to
solve and simulate the system of differential equation, which
will help us to understand the attacking behaviour of malicious
object in computer network and efficiency of antivirus
software [4]. SEIR (Susceptible, Exposed, Infected and
Recovered) model is derived from SIR model. The SEIR
model is used to analyse control treatment of epidemics.

SEIRD (Susceptible, Exposed, Infected, Recovered and Death)
model is also derived from SIR model [5]. In this model,
exposed and death compartments are added in SIR model. This

model gives the death numbers, which is used for policy
makers to control the epidemics [6]. SEIAHR (Susceptible,
Exposed, Infected, Asymptomatic, Hospitalized and
Recovered) model is derived from the SEIR model [7]. The
asymptomatic and hospitalized compartments are added in this
model. This model will provide policy intervention information
i.e. number of hospitalized people, for a policy maker to do the
decision making to deal with epidemics [8].

Proposed Epidemic Model
SELMiAjHRD (Susceptible, Exposed, Latent, Symptomatic
(vaccinated), Symptomatic (non-vaccinated), Asymptomatic
(vaccinated), Asymptomatic (non-vaccinated), Hospitalized,
Recovered and Death) model is derived from SIjRS and
SELMAHRD models. This model have the following
assumptions: susceptible people are the group of vaccinated
and non-vaccinated people, vaccinated people will not die due
to disease, total population is fixed, age and population
structure is not considered [9]. SELMiAjHRD model is shown
in Figure 1. The total population is considered as susceptible
people. In the susceptible, those who are near to the infected
people have the higher chance to get infection. They are called
as exposed people. In the exposed compartment, some persons
got infection and not yet infectious are called latent people.
From latent compartment, we can classify the people as
symptomatic and asymptomatic people. Symptomatic people
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are the infected with the clinical symptoms. Asymptomatic
people are the infected without symptoms [10].

Figure 1. SELMiAjHRD model.

Symptomatic compartment is categorized as vaccinated
symptomatic and non-vaccinated symptomatic, similarly
asymptomatic compartment is divided into vaccinated
asymptomatic and non-vaccinated asymptomatic. Non-
vaccinated people have the higher probability to dead. The
symptomatic people will admit to the hospital. Asymptomatic
people move to the recovered compartment. Hospitalized
people have the probability to go either recovered compartment
or death compartment [11]. Table 1 depicts the symbol
definition for the proposed model.

Table 1. Symbol definition.

S → Number of susceptible people α1 → Symptomatic infection rate

E → Number of exposed people α2 → Asymptomatic infection rate

L → Number of Latent people σ1 → Vaccination Symptomatic
hospitalized rate

MV → Number of vaccinated
symptomatic people

σ2 → Non-Vaccination symptomatic
hospitalized rate

MNV → Number of non-vaccinated
symptomatic people

σ3 → Vaccination Asymptomatic
recovery rate

AV → Number of vaccinated
asymptomatic people

σ4 → Non-Vaccination asymptomatic
recovery rate

ANV → Number of non-vaccinated
asymptomatic people

μ1 → The velocity of latent people
become symptomatic people

H → Number of hospitalized people μ2 → The velocity of latent people
become asymptomatic people

R → Number of recovered people μ3 → The velocity of symptomatic
people become hospitalized people

D → Number of death people μ4 → The velocity of asymptomatic
people become recovered people

N → Total Number of population μ5 → The velocity of hospitalized
people become recovered people

β → Transmission rate γ1 → Recovery rate

βV → Transmission rate of vaccinated
individuals

μ → Exposed rate

The model equations are listed below.
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Stability of the disease free equilibrium
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The given system has a disease free equilibrium given by
U0=(N, 0, 0, 0, 0, 0, 0, 0, 0, 0). The linear stability of U0 is
governed by the basic reproductive number (R0).

The stability of this equilibrium will be investigated using the
next generation operator.

Here

X=(S, R),

Y=(E),

Z=(L,MV, MNV, AV, ANV, H, D)

(g ̃) (X*, Z)=β [L+MNV+ANV]+(βV S [MV+AV])/µ

Then M=β and D=μ1 α1+(1-α1)+μ2 α2+(1-α2)

Hence R0, the basic reproductive number=MD-1=β/(μ1α1+ (1-
α1)+μ2α2+ (1-α2))

R0 is the reproduction number. If R0<1, the infection dies out
and if R0>1 the disease spreads.
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Theorem I
If R0<1, the disease free equilibrium of the given system is
locally asymptomatically stable and unstable when R0>1.

1. The next generation operator approach: R0 is often found
through the study and computation of the Eigen values of the
Jacobian at the disease- or infectious-free equilibrium.
Diekmann et al. follow a different approach: the next
generation operator approach. They define R0 as the spectral
radius of the “next generation operator". The details of this
approach are outlined in the rest of this section. First, we
consider the case where heterogeneity is discrete, that is, the
case where heterogeneity is defined using groups defined by
fixed characteristics, that is, for epidemiological models that
can be written in the form:

dX/dt=f (X, Y, Z),

dY/dt=g (X, Y, Z),

dZ/dt=h (X, Y, Z),

Where X IRr, Y IRs, Z IRn, r, s, n ≥ 0, and h (X, 0, 0)=0. The
components of X denote the number of susceptible, recovered,
and other classes of non-infected individuals. The components
of Y represent the number of infected individuals who do not
transmit the disease. The components of Z represent the
number of infected individuals capable of transmitting the
disease.

Let U0=(X*, 0, 0) IRr+s+n denote the disease-free equilibrium,
that is,

F (X*, 0, 0)=g (X*, 0, 0)=h (X*, 0, 0)=0

Assume that the equation g (X*, Y, Z)=0 implicitly determines
a function Y=(g ̃ X*, Y). Let A=Dz h (X*, (g ̃X*, Y), 0) and
further assume that A can be written in the form A=M-D, with
M ≥ 0 (that is, mij ≥ 0) and D>0, a diagonal matrix.

The basic reproductive number is defined as the spectral radius
(dominant eign value) of the matrix MD-1, that is,

R0=p (MD-1)

Theorem II
The disease free equilibrium of the given system is globally
asymptomatically stable and unstable when R0<1.

2. Global stability conditions for the disease-free equilibrium

When R0<1 the disease-free equilibrium is locally asymptotic
stable whenever R0<1 and unstable (LAS). When R0>1. Now,
we list two conditions that if met, also guarantee the global
asymptotic stability of the disease-free state. First, System 1.1
must be written in the form:

dX/dt=F (x, Z),

(2.1) dZ/dt=G (X, Z), G (x, 0)=0,

Where X IRm denotes (its components) the number of
uninfected individuals and Where Z IRn denotes (its
components) the number of infected individuals including

latent, infectious, etc. U0=x0, 0 denotes the disease-free
equilibrium of this system.

The conditions (H1) and (H2) below must be met to guarantee
local asymptotic stability.

(H1) for dX/dt=F (X, 0), X* is a Globally Asymptotic Stables
(GAS),(H2)�(�,�) = �� − �(�,�),�(�,�) ≥ 0 for (�,�) ∈ �
where A=Dz G (X*, 0), is an M-matrix (the off diagonal
elements of A are nonnegative) and is the region where the
model makes biological sense.

If System 2.1 satisfies the above two conditions then the
following theorem holds:

Theorem: The fixed point U0=(x*, 0) is globally asymptotic
stable equilibrium of 2.1 provided that R0<1 (LAS) and that
assumption (H1) and (H2) are satisfied.

Proof
Let X=(S, R),

Z=( E, L,MV, MNV, AV, ANV, H, D),

F (X, 0)=(0) and

Where J=μ1 α1+(1-α1)+μ2 α2+(1-α2) and

Since, � ≤ �,�(�,�) ≥ 0.�* = (�, 0)is globally
asymptomatically stable for the system dX/dt=F (X, 0).

Also the off-diagonal elements of A are nonnegative i.e. A is
an M-matrix.

Then the disease free Equilibrium of the given system is
globally asymptomatically stable for R0<1.

Multi-hidden layer neural network with non-
multiplier
Hidden layer activation functions: Hidden layer h11 and
h12: Knowing just the numbers of cases of infection identified
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by surveillance activities is not sufficient to identify the risk
(probability) of infection occurring in the facility residents;
rates must be used. Rates measure the probability of
occurrence in a population of some particular infection. An
incidence rate is typically used to measure the frequency of
occurrence of new cases of infection within a defined
population during a specified time frame (Figure 2).

α1=(Symptomatic infected)/Susceptible

α2=(Asymptomatic infected)/Susceptible

Where,

α1=Symptomatic infection rate

α2=Asymptomatic infection rate

Figure 2. Multi-hidden layer neural network with non-multiplier.

Hidden layer h13: Infected individual can transfer the disease
with the respect to the contact rate, if there is any contact
between the infected one with other susceptible, then the first
individual infects the susceptible. Whether or not a particular
kind of contact will be effective depends on the infectious
agent and its route of transmission. The effective contact rate
(denoted β) in a given population for a given infectious disease
is measured in effective contacts per unit time. This may be
expressed as the total contact rate (the total number of contacts,
effective or not, per unit time, denoted γ), multiplied by the
risk of infection, given contact between an infectious and a
susceptible individual. This risk is called the transmission risk
and is denoted p. Thus:

β=γ × ρ

The total contact rate, γ, will generally be greater than the
effective contact rate, β, since not all contacts result in
infection. That is to say, p is almost always less than 1 and it
can never be greater than 1, since it is effectively the
probability of transmission occurring.

Where,

β=Contact rate (Transmission rate), γ=Total contact rate and
ρ=Transmission risk

p=(Total number of infected )/(susceptible)

Total number of infected=Number of symptomatic+Number of
asymptomatic

γ=(Contact )/(Time )

Hidden layer h14 and h15

The disease may be transmitted from objects, but is most often
transmitted by direct skin-to-skin contact, with a higher risk
with extended contact. Initial infections require one to two
weeks to become symptomatic.

μ1=(Distance )/(Symptomatic time)

μ2=(Distance )/(Asymptomatic time)

Where,

μ1=Velocity of latent people become symptomatic

2=Velocity of latent people become asymptomatic

Hidden layer hi

h= 1/ui+e-h
ij

We used logistic activation function in the 2nd hidden layer
with different learning rate ui.

Summation layer ε

Reproductive number R0=β/(μ1 α1+(1-α1)+μ2 α2+(1-α2)

R0 is the reproduction number. If R0<1, the infection dies out
and if R0>1 the disease spreads. Tables 2 and 3 depict the
training set and transmission rates for the proposed model
respectively.

Table 2. Training set.

Symptomatic infected 0.4 Hidden layer Learning rate ui

Asymptomatic infected 0.2 μ1 0.5

Susceptible 0.8 μ2 0.2

Contact 0.4 Β 0.0001

Distance 0.2 α1 1.0

Symptomatic time 0.5 α2 2.0

Asymptomatic time 0.2

Table 3. Training multi-hidden layer neural network.

Iteration μ1 μ2 β α1 α2 R0 Error

1 2.0302 5.0302 1.0 1.0302 0.5000 -0.0043 0.0043

2 2.1311 5.0065 1.0 1.3569 1.1065 0.0020 -0.0020

3 2.1187 5.0067 1.0 1.2575 0.8307 -0.0013 0.0013

4 2.1202 5.0067 1.0 1.2844 0.9340 -0.0032 0.0032

5 2.1202 5.0067 1.0 1.2844 0.9340 -0.0032 0.0032

6 2.1200 5.0067 1.0 1.2768 0.8930 -0.0020 0.0020
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7 2.1200 5.0067 1.0 1.2789 0.9094 -0.0023 0.0023

8 2.1200 5.0067 1.0 1.2783 0.9028 -0.0022 0.0022

Figure 3. Simulation of SELMiAjHRD model.

Conclusion
The proposed SELMAHRD (Susceptible, Exposed, Latent,
Symptomatic, Asymptomatic, Hospitalized, Recovered and
Death) model will provide the number of hospitalized and
number of death information for the policy makers to develop
the prevention policies (Figure 3). The assumptions are similar
to those of SIR model, which include total population is fix,
population structure is not considered in the model, latent
period will not change with time, and recovered people will not
get infected again. In the model, infected are divided into two
compartments i.e. latent and symptomatic. Some people may
actually infect other people without any symptom, but later on
their symptoms come out. According to the assumption, the
vaccinated people directly go to the recovered compartment.
This model explains the common ways to prevent influenza i.e.
isolating susceptible people, letting them at home. Based on
the SIR model, a more number of models developed for
epidemic diseases such as SIRS, SEIR, SEIRS, SEIRD,
SEIAHR, SELMAHRD etc. SELMAHRD model might not
provide vaccinated and non-vaccinated people behaviours. In
proposed model, susceptible have two kinds of people, they are
vaccinated and non-vaccinated. We assume that vaccinated will
not die due to disease. The proposed compartmental epidemic
model is used to calculate the basic reproduction number R0
and dynamics of disease-free equilibrium for influenza A
(H1N1) in Vellore, Tamil Nadu, India. However, the realistic
details of transmission cannot be determined from such
models. Hence, multi-hidden layer neural network with non-
multiplier is used to elucidate other factors that also influence
the disease dynamics. We conclude that the transmission of
influenza A (H1N1) in Vellore, Tamil Nadu, India is under
control and can be totally eradicated if the number of

Government authorized H1N1 treatment centers are increased
and the supply of drugs to these centers could be increased.
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