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Abstract 

Chronic anxiety, depression or physical exertion-associated stress consistently activates 

the hypothalamic-pituitary-adrenal (HPA) axis. Each individual component of the HPA 

axis, such as CRH, ACTH, β-endorphin or glucocorticoid exerts deleterious effect on the 

hypo-thalamic-pituitary-gonadal (HPG) axis and subsequently leads to reproductive 

failure. Gonadotropin-releasing hormone (GnRH) secretion and the response of 

gonadotrophs to GnRH stimulation are severely impaired. Moreover, failure of gonadal 

response to gonad-otropin concurrently results in deficient steroidogenesis, anovulation, 

defective endometrial decidualization and implantation, abnormal fetal outcome and 

delayed parturition. 

In male, a consistent testosterone deficiency due to stress-linked altered functioning of 

the HPG axis has also been documented. 

Stress-associated growth hormone (GH) deficiency with a corresponding deficiency of 

insulin-like growth factor-1 (IGF-1) at the level of the hypothalamus, pituitary, ovary, 

and uter-ine endometrium leads to defective reproductive outcome and lactation. 

GH or IGF-1 deficiency also impairs testosterone biosynthesis, spermatogenesis, sperm 

maturation and erectile process. 

Introduction 

Activation of the HPA axis concurrently inhibits HPG axis in stress 

Individuals frequently encounter stressful conditions. In vertebrates, a major mechanism 

of physiological response to stress is hyperactivation of the hypothalamic-pituitary-



adrenal (HPA) axis. HPA axis hyperactivation is evident in major depressive [1,2] and 

anxiety [3] disorders. The occurrence of persistent increase in serum concentration of 

glucocorticoid in physical and psychological stress in primates [4,5], rodents [6] and 

domestic species [7] is well documented. 

Chronic hyperactivation of glucocorticoids, however, re-sults in the development of 

diabetes, hypertension and even cancer [8]. The principal regulator of the HPA axis, 

corticotrophin-releasing hormone (CRH) and its receptors are located in the ovaries, 

decidual endometrial stroma, placental trophoblast and even in the Leydig cells of the 

testis [9-12]. 

Although the inhibitory effect of CRH in decreased LH and FSH secretion [13], ovarian 

steroidogenesis [14] and testosterone biosynthesis [15] has been documented, yet the 

locally produced CRH is found to be essential in promoting endometrial decidualization 

and implantation [16]. CRH may moreover act as the placental clock to trigger the onset 

of parturition [17]. On the other hand, CRH-activated β-endorphin [18] or corticotropin 

(ACTH) [19] is known to suppress the gonadotropin-releasing hormone (GnRH) pulses 

[18,20] with a corresponding attenuation of pulsatile release of luteinizing hormone (LH) 

[21,22] which subsequently leads to anovulation [23], interruption of endometrial 

decidualization [24] and pregnancy wastage [25]. 

The essential rhythmic pattern of GnRH secretion from the hypothalamus leads to an 

increased pulsatile release of LH [26]. Moreover, in concert with follicle stimulating 

hormone (FSH), LH dictates preovulatory follicular growth and estrogen production 

which subsequently trig-gers LH surge and ovulation [27]. Daley et al [28] have shown 

that stress-like concentration of glucocorticoid blocks estrogen-dependent increase in 

pituitary tissue concentration of GnRH and GnRH receptor mRNA. Therefore, the 

concept of glucocorticoid-linked reduced responsiveness of the gonadotrophs to GnRH 

[29] with a corresponding attenuation of gonadotropin secretion [30] seems to be logical. 

An excess of glucocorticoid has been found to suppress GnRH secretion [31]. 

Experimental results of the effectiveness of excessive glucocorticoid on gonadotropin 

secretion, however, re-main conflicting. When animal studies have linked increased CRH 

to decreased gonadotropin secretion [32], human studies using short-term infusion of 

CRH [33], conversely presented contradictory data. Since glucocorti-coid receptors have 

been demonstrated in rat ovaries [34] and ovarian granulosa cell cytosol [35], the direct 

effect of glucocorticoids [34] could possibly result in follicular atresia [36] by 

suppressing the action of LH/hCG at the receptor level [37]. Glucocorticoid-induced 

suppression of granulosa cell aromatase enzyme activity finally re-sults in estrogen 

deficiency [38]. Estrogen deficiency has also been recorded in anxiety and depression-

related stress [39]. 

Investigators have recorded that glucocorticoid could greatly diminish the tissue uptake 

of estrogen [40] and estrogen-stimulated synthesis of DNA in the uterus [41]. Moreover, 

the number of estrogen receptors [42], blood flow [43], protein synthesis [44], 

prostaglandin synthesis [45] and insulin-like growth factor-1 (IGF-1) mRNA ex-pression 



[46] in the uterus are found to be inhibited by glucocorticoids. Most of these estrogen-

induced uterine profiles are essentially important for blastocyst implanta-tion [47], 

endometrial decidualization [48], pregnancy maintenance [49] and parturition [50]. It is, 

however, im-portant to note that glucocorticoid receptors in the uterus remain unaltered 

under the condition of chronic stress or even after prolonged glucocorticoid 

administration [51]. Estrogen deficiency not only impairs luteal steroidogene-sis in 

pregnant rats [52], it also jeopardizes receptor ex-pression of estrogen and progesterone 

in uteri [53], which subsequently results in pregnancy wastage [54] and parturition failure 

[50]. Moreover, the parental stress-associa-ted shorter gestation, complicated delivery, 

smaller birth weight in humans [55,56] could possibly be linked to the free access of 

excess glucocorticoid through placental barrier [57]. Excess glucocorticoid is also found 

to cause delayed parturition and still birth in rats [50]. Highly anx-ious women have 

similarly been shown to have a signifi-cant reduction of uterine blood flow in the third 

trimester of pregnancy, as compared to less anxious women [58]. In rats, chronic stress 

during pregnancy exerts profound long-term influences on the offspring [59]. 

Although females are known to be more vulnerable to stress and exhibits hyperactivity of 

the HPA axis function in comparison to male animals [60,61], yet the site of chronic 

stress-associated lesion of the hypothalamic-pituitary-testicular axis has been identified to 

be at the level of the hypothalamus [62]. Exogenous glucocorticoid is also found to 

attenuate plasma testosterone concentra-tion in men by inhibiting GnRH secretion 

[29,63]. The suppressive effect of ACTH on gonadotropin secretion [64] has been 

recorded in male patients with Cushing’s syndrome [65]. Moreover, the suppressive 

effect of ACTH on gonadotropin secretion has never been recorded in patients with 

adrenocortical insufficiency [66]. 

Glucocorticoid receptors have been located in the rat Leydig cells [67]. The restraint 

stress-induced reduction in plasma concentration of testosterone, however, is claimed to 

be LH-independent [68], but appears to be related to the inhibition of the activities of 

steroidogenic enzymes [69]. β-endorphin blocker, such as naloxone or naltrexone has 

been shown to counteract the inhibitory effect of restraint stress on plasma testosterone 

levels by maintaining the normal functioning of the testicular ster-oidogenic enzymes 

[70]. In stressed rats, a concomitant rise in testicular nitric oxide (NO) concurrently with 

down regulated testosterone production has also been documented [71]. 

HPA axis activation and suppression of the GH-IGF-1 axis 

The HPA axis activation and growth hormone (GH) blunting have in fact been linked in a 

primate study [72]. A blunted GH response to clonidine has however, been experienced 

in both anxiety and depression [73]. Attenuated release of GH in response to stress has 

been recognized long ago in experimental animals [74]. Experimental evidences suggest 

that GH may function as a cogonadotropin [75]. GH receptor mRNA expression and GH 

binding protein (GHBP) have been detected in the ovary of humans [76] and in several 

animal species [77-79]. A number of in vitro studies have shown that GH can influence 

oocyte maturation, increase receptors to gonad-otropin, thereby aiding folliculogenesis 

[80]. 



It is known that sexual maturation is delayed in Laron dwarfism [81] and growth 

hormone insensitivity also impairs the ability of young adult female mice to form 

functional corpora lutea of pregnancy [82]. However, a full 
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reproductive potential requires actions of GH and adequ-ate levels of insulin-like growth 

factor-1 (IGF-1) in peripheral circulation [83]. Therefore, to induce ovulation in Laron 

dwarfism, IGF-1 treatment is often preferred [84]. GH-receptor gene knockout mice are 

found to be IGF-1 deficient [85]. IGF-1 receptors were detected in the pituitary, gonads 

and reproductive tract [86] and the influence of IGF-1 on the release of GnRH [87] and 

gonadotropin [83], follicular steroidogenesis, ovarian follicular growth, and ovulation 

[see 88] have also been documented. 

IGF-1 mRNA was identified in the adult testis [89]. In the human testis, IGF-1 was also 

identified in Leydig cells, Sertoli cells and primary spermatocytes [90]. A vital role of 

IGF-1 in testicular steroidogenesis [91] has also been suggested. GH treatment to adult 

GH/IGF-1-deficient Ames dwarf mice increased plasma IGF-1 level and concurrently 

increased androstenedione and testosterone release from the isolated testes [92]. In 

hypophysectomized rats, GH administration resulted in an increase in the LH receptor 

content of the testis [93] and GH has been shown to enhance the testicular responsiveness 

to gonadotropin treatment [94]. 

Although, an enormous amount of experimental and clini-cal data are available, the 

absolute pathway between the stress-induced hyperactivation of the HPA axis and 

corresponding attenuation of the HPG axis has yet to be deter-mined 
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