

Article type: Editorial

Home Page URL: <https://www.alliedacademies.org/journal-of-psychology-and-cognition/>

Metacognition: The architecture of self-regulated thought.

Isabella Ricci*

Department of Neurophysiology, University of Milan, Italy.

*Correspondence to: Isabella Ricci, Department of Neurophysiology, University of Milan, Italy, E-mail: i.ricci@milan.edu

Received: 03-Jul-2025, Manuscript No. AAJPC-25-169446; **Editor assigned:** 04-Jul-2025, PreQC No. AAJPC-25-169446(PQ); **Reviewed:** 18-Jul-2025, QC No AAJPC-25-169446; **Revised:** 21-Jul-2025, Manuscript No. AAJPC-25-169446(R); **Published:** 28-Jul-2025, DOI:10.35841/ajpc -10.3.299

Introduction

Metacognition refers to the awareness and regulation of one's own thinking processes. It encompasses two primary components: metacognitive knowledge (what individuals know about their cognition) and metacognitive regulation (how individuals monitor and control their learning). As a fundamental aspect of human intelligence, metacognition allows individuals to plan, evaluate, and revise their cognitive strategies during problem-solving, comprehension, and decision-making. This capacity for self-reflective thought enables learners not only to assess what they know but also to identify what they do not know, which in turn guides the deployment of cognitive resources efficiently and effectively [1].

Research in educational psychology has highlighted the critical role metacognition plays in academic success. Students with well-developed metacognitive abilities tend to set more effective learning goals, choose appropriate study strategies, and evaluate their performance accurately. Techniques such as self-questioning, summarization, and prediction are common metacognitive strategies that facilitate deeper learning. Importantly, metacognitive skills can be taught and improved through guided practice and feedback. Instructional approaches that emphasize reflective thinking, such as think-aloud protocols and self-assessment activities, have been shown to significantly enhance learning outcomes, particularly in complex or unfamiliar domains [2].

From a developmental perspective, metacognitive abilities begin to emerge in early childhood and continue to evolve into adolescence and adulthood. Young children may demonstrate basic forms of monitoring and regulation, but it is during the school years that more sophisticated metacognitive processes—such as evaluating comprehension and adjusting reading strategies—become apparent. Individual differences in metacognitive development are influenced by a variety of factors, including cognitive capacity, language skills, and educational experiences. Socio-cultural elements also play a role, as cultural norms and classroom environments can either foster or inhibit the expression and cultivation of metacognitive skills [3].

In the realm of cognitive science and neuroscience, metacognition is increasingly recognized as a distinct neural function. Studies using functional neuroimaging have identified brain regions associated with metacognitive judgments, including the prefrontal cortex and anterior cingulate cortex. These areas are linked to executive control, error monitoring, and decision-making. Neuropsychological research with individuals who have suffered frontal lobe damage often reveals deficits in self-awareness and cognitive regulation, further supporting the neurological basis of metacognition. Moreover, recent models suggest that metacognition may operate on a meta-level separate from, but integrated with, first-order cognitive

Citation: Ricci I. Metacognition: The architecture of self-regulated thought. J Psychol Cognition. 2025;10(3):299.

processes, allowing for the evaluation and correction of mental operations in real time [4].

In applied settings, metacognition has far-reaching implications beyond academic performance. In clinical psychology, deficits in metacognitive awareness are implicated in various mental health conditions, including schizophrenia, depression, and anxiety. Metacognitive therapy, for instance, targets maladaptive thought monitoring and regulation to treat psychological distress. In professional environments, successful problem-solving and decision-making often depend on metacognitive abilities such as situational awareness, flexibility, and the capacity to learn from errors. As society increasingly demands adaptive expertise, lifelong learning, and critical thinking, fostering metacognitive skills becomes essential not only in formal education but across the entire span of human development and functioning [5].

Conclusion

Metacognition stands at the intersection of cognition, awareness, and control, enabling individuals to engage in self-regulated thinking that enhances learning, decision-making, and adaptation. Its importance spans education, neuroscience, and mental health, underscoring its role in facilitating

personal growth and professional competence. By nurturing metacognitive skills, individuals can become more effective learners, thinkers, and problem-solvers in an increasingly complex world.

References

1. AYDINLI Fİ, Çelik E, Vatandaşlar BK, et al. Myelin disorders and stem cells: as therapies and models. *Turk J Biol.* 2016;40(5):1068-80.
2. Boda E. Myelin and oligodendrocyte lineage cell dysfunctions: New players in the etiology and treatment of depression and stress-related disorders. *Eur J Neurosci.* 2021;53(1):281-97.
3. Duncan ID, Radcliff AB. Inherited and acquired disorders of myelin: the underlying myelin pathology. *Exp Neurol.* 2016;283:452-75.
4. Jensen BK, Monnerie H, Mannell MV, et al. Altered oligodendrocyte maturation and myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. *J Neuropathol Exp Neurol.* 2015;74(11):1093-118.
5. Volpi VG, Touvier T, D'Antonio M. Endoplasmic reticulum protein quality control failure in myelin disorders. *Front Mol Neurosci.* 2017;9:162.