
 https://www.alliedacademies.org/biomedical-imaging-and-bioengineering/

J Biomed Imag Bioeng 2022 Volume 6 Issue 101

Rapid Communication

Citation: Watson S, Mechanobiology of fluid mechanics and instability of kapista pendula. J Biomed Imag Bioeng. 2022;6(10):150

The emergence and development of instabilities is one of the central problems in fluid dynamics. 
We develop a relationship between the free-fluid interface instability and the inverted pendulum. 
When an inverted pendulum is unstable because only gravity acts on it. This position is stabilized 
by the Kapitsa phenomenon, which produces high-frequency, low-amplitude vertical vibration. 
The base creates an imaginary force that opposes gravity. By transforming the dynamic equations 
governing the fluid interface to the appropriate pendulum equations, we show how well-tuned 
oscillations can induce stability in a fluid system.

Abstract

Mechanobiology of fluid mechanics and instability of kapista pendula.

Sara Watson*

Department of Applied Mathematics, University of Washington, United states.

Introduction
Interfacial instabilities are the seeds of many pattern forming 
mechanisms in Nature. The ability to delay or entirely 
suppress these instabilities therefore represents a significant 
tool. In fluid mechanics, a number of important instabilities 
occur at one or more discrete interfaces between immiscible 
fluids with different material and flow properties. Much recent 
attention has been paid to potential methods of stabilizing 
these interfaces. Several mechanisms are available for 
example, stabilization of the canonical Rayleigh-Taylor 
instability has been proposed through the use of gyroscopic 
forces, magnetically-charged colloids, or heat and mass 
transfer across the interface. Similarly, capillary instabilities 
have been shown to be tunable in the presence of internal 
flows, external acoustic waves, and vibrations [1].

Tuning the properties of these instabilities is desirable, for 
example, in the design of fusion reactors. In such systems it 
can be desirable to find criteria for global stability which do 
not depend on feedback mechanisms, but rather depend on 
inducing a tenable external force which causes the unperturbed 
trivial solution to be stable for long times. In classical 
mechanics, an external agent can always induce such a force 
according to the principle, by accelerating the previously-
inertial frame in which the desired solution was unstable [2].

A canonical example is the Kapitsa phenomenon, in which a 
pendulum in the inverted position can be stabilized by low-
amplitude, high-frequency vertical vibrations of its base. 
This effect was predicted based on variants of the Mathieu 
equation. The stability of the trivial solution is determined by 
the material parameters and the parameters of the oscillator 
and several stable regions exist in this parameter space. 
Recent work has sought to explain and generalize this effect, 

using tools ranging from simplistic topology to differential 
geometry and classical mechanics. Using external vibrations 
to transform the equation of a simple harmonic oscillator into 
a Mathieu-type equation has several extensions [3].

The use of the effect to circumvent Earns haw’s theorem, 
according to which any stationary collection of electric 
charges is inherently unstable, led to the development of 
the ion trap which earned its inventor the Nobel Prize. It is 
now known that all extreme of a potential become minima 
when the potential undergoes similar oscillations, leading to 
vast applications in conservative systems. These oscillations 
have been invoked as a stabilizing mechanism as far afield as 
economics [4].

They have also been known to stabilize a denser fluid atop 
a lighter fluid for many decades, presenting one method of 
dynamically stabilizing the Rayleigh-Taylor instability. A 
similar effect can levitate a rigid body by placing it in a small-
amplitude high-frequency oscillating airflow; this is likely an 
important mechanism in insect flight. By reducing the local 
dynamics of the interface to a one-dimensional dynamical 
equation for the perturbation amplitude via standard techniques 
in the study of instabilities [5].

Conclusion
In this work we reviewed existing literature connecting an 
inverted pendulum to the Rayleigh-Taylor instability. Both 
systems can be stabilized by low-amplitude high-frequency 
external forcing in the vertical direction mathematically 
speaking, this equates to transformation from the equation of a 
simple harmonic oscillator to Mathieu’s equation. We expand 
this initial correspondence by deriving similar equations 
for discrete planar and cylindrical interfacial instabilities 
of interest and pointing to further expansions known in the 
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literature. In each case we use the penduluanalogies to invoke 
results from the vibrations and dynamical systems literature.
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