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Abstract

Trypanosoma brucei is the parasite responsible of causing both human (sleeping sickness) and animal
(nagana) African trypanosomiasis, diseases of medical and veterinary importance. The infection in
cattle has a major impact on African economy, which limits the production of milk and meat. The life
cycle of these parasites extracellular alternate between the salivary glands of the insect transmitter
(tsetse fly) and the blood of the vertebrate (mammal), presenting different morphological stages:
procyclic, epimastigote, metacyclic forms in the invertebrate, long-slender trypomastigotes and short-
stumpy forms in the vertebrate. The ATs are extracellular microorganisms that multiply in the blood
and the lymphatic system and are constantly exposed to the attack of the the immune system of the
mammalian host. The metacyclic parasites express a dense cover formed by the Variant Surface
Glycoprotein (VSG), after entering to the vertebrate host they transform into a morphology that stays
in the blood (bloodstream). This is possible thanks to a fundamental mechanism developed by ATs, the
switch of VSG through which the parasites change his coat regularly and liberate the VSG expressed
at this time, which allows the evasion of the attack of the immune system of the vertebrate host
(specifically humoral response). In addition to all these events, this pathogens have generated an
activation of M1 dependent of IFN-γ; express proteins of resistance to factors of human serum, for
example, SRA (Serum Resistance Antigen) and TgsGP (T. b. gambiense-specific glycoprotein);
Glycosylinositolphosphate-Variable Surface Glycoprotein (GIP-VSG) produce the activation of NF-κB
and MAPK pathways and the production of pro-inflammatory molecules (TNF-α, IL-6, IL-12p40, and
GM-CSF) that with IFN-γ activated macrophages type M1, promotes a series of pathologies as tissue
damage and encephalitis that provoke destruction in the Central Nervous System (CNS); these are just
some of the factors that support the development of the infection in mammals. The African
trypanosomes (AT) have learned to survive the attack of the defense system of vertebrates, through
many years of carrying out a host-parasite interaction extremely complex and dynamic. Throughout
the life cycle, these parasites re-programed your metabolism in order to benefit from the nutrients
available in the environment. This abilities has allowed these escape magicians advance effectively and
successfully in the development of immune system evasion mechanisms, allowing manipulating cellular
and humoral responses, which implies a spectacular equilibrium in the vector/parasite/host
relationship that allows their survival in the mammal and leads to a happy term their cycle of
transmission.
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Introduction
T. brucei is a hemoflagellate of the family Trypanosomatidae
(orden Kinetoplastida), with a digenetic life cycle, that is, that
develops in a vertebrate host and invertebrate host. The
mammal becomes infected when the tsetse fly injects into its
skin the metacyclic parasites along with the saliva, which
multiply at the entry site and sometimes produce a lesion
known as chancre. Subsequently, some of them are transformed
to the long and slender blood-stream trypomastigotes, takes
place the process of division and they become in shorter,
stumpy blood-stream form of parasite. Some of these last forms
are ingests by the tsetse fly during a blood meal. It is important
to emphasize that these forms have a preadaptation to survive
in the environmental conditions present in the insect vector [1].
They then become procyclical forms in the insect's midgut and
migrate to the salivary glands where they become
epimastigotes. Later, the conversion to infectious metacyclic

forms occurs, which is preadapted to grow and multiply within
the blood of mammals. This completes the complex life cycle
of these extraordinary organisms (Figure 1) [2]. Human African
trypanosomiasis (HAT) it is known as “sleeping sickness”,
because one of the characteristic signs of this disease is the
alteration of the sleep cycle which manifests in the advanced
stage of this parasitary infection [3]. HAT attacks the central
nervous system and infection can be by Trypanosoma brucei
gambiense in some countries of Africa (Western and Central)
and Trypanosoma brucei rhodesiense in other countries of
Africa (Eastern and Southern). These parasites species present
identical morphological features, but their epidemio-logical
characteristics are very dissimilar. Nagana and Surra is how are
designated the disease of trypanosome in cattle, that produces
large epidemic in Africa with high impact economical, due to
the death of infected animals [4]. The co-evolution of many
years between the parasite/host has allowed evading the
primary responses (innates) and escaping to the first barriers
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shown by the organism, in this way the parasite implants in the
host and starts the infection.

Figure 1. Life cycle of T. brucei.

Moreover, it also escapes to the immune system action
throughout all its permanence in the vertebrate. The most
interesting and fabulous biological mechanism of immune
system disorder is the capacity of the trypanosome to change
every so often the antigenic cover (VSG), which involves
programmed rearrangements in the pathogen's DNA. This
phenomenon originates polyclonal activation of B and T
lymphocytes, as one of the host´s defenses tool, related to
immunosuppression, favoring the perpetuation of these
parasites [5,6]. VSG can work in two ways: avoiding access of
components of the immune system (innate/acquired) to
invariant proteins on its surface and keeping safe the parasites
in the blood of elimination by the complement system [7]. This
review describes some of the mechanisms applied by these
parasites in order to effect the evasion of immune system.

Escape of host´s defenses
The mammals can respond immunologically through two
pathways: the innate system (low specific) and the adaptive
response (antigen specific).

Evasion of innate response
Theinnate immune system is the first barrier of mammals to

defend themselves against trypanosomes. T. b. gambiense and
T. b. rhodesiense are subject to the lytic action of two serum
human complexes, denominated trypanosome lytic factor
(TLF) (TLF 1 and TLF 2) [8], containing apolipoprotein L1
(APOL1) [9] which is endocytosed via the haptoglobin-
hemoglobin parasite surface receptor. Both parasites evade the
destruction by APOL1 producing certain proteins that give
them resistance [10]. The T. b. gambiense generated a TgsGP, a
glycoprotein that counteracts APOL1 activity, which allows
escaping from the death activated by TLF particles [11]. This
protein is indispensable in order to protect against the
components of human serum, because the elimination of
TgsGP favors susceptibility of the parasites to human serum

and recombinant APOL1, when TgsGP reenters the weakened
parasite resistance reappears [12]. T. b. rhodesiense produces
SRA, a modified form of VSG, which interacts in the lysosome
with APOL1, induces resistance against normal human serum
(NHS). SRA refers to an expression site-associated gene
(ESAG), with a determinate VSG ES, denominated R-ES,
picked in the human serum through the process of antigenic
variation [13,14]. It has been observed that the production of
SRA by T. b. rhodesiense is not permanent, since after making
peals of the parasites in mice it is lost the resistance to NHS,
due to lack of the trypanolytic factor of the human serum [15].

Complement
The complement activation can start through two pathways: the
alternative pathway (independent of antibody) and the classical
pathway (dependent of antibody). The turn on of the alternative
pathway is supremely important in the destruction of the
parasite during the beginning of the disease. T. b. gambiense
trypomastigotes forms prevent the switch on of the alternative
pathway of the complement, using VSGs to block the areas on
the surface of the microorganism that started this immune
cascade [16]. This process occurs without appearance of the
final complex (C5-C9) which can produce membrane rupture
(lytic activity is inhibited), this route stops at the moment that
the C3 convertase is established in the membrane of the
microorganism [17]. Besides, the infections by T. b. gambiense
or T. b. rhodesiense originates a decreased in complement
activity [18]. For the study of the alternative pathway, the
procyclic forms of T. b. congolense and T. b. brucei were
placed in the presence of fresh serum, in this experiment it is
noted lysis of the trypanosomes, because in this stage of the
cycle of life they don´t present the protective cover of VSG [5].

The classical complement pathway switches on when the
parasites (coated with VSG) are eliminated shoots out by
antibody mediated lysis and/or opsonization. This process
induces the formation of anaphylatoxins or proteins of
complement, which are originated as products of the activation
of the complement pathway; it originates vasodilatation,
histamine release from mast cells, smooth muscle contraction,
enhanced vascular permeability, inflammation, chemotaxis and
liberation of cytotoxic radicals. The activation of the system
complement is essential for the lysis of trypanosomes
dependent of antibody, that occur by liberation of a numerous
quantity of soluble VSG (sVSG), this phenomenon favors the
decrease of elements of the complement that leads to a
hypocomplementemia [19]. The immune complexes that
induce complement activation are products of noncovalents
interactions between antibodies specifically directed against
trypanosomes (eg anti-VSG antibody) and trypanosomes
antigens or autoantigen, they trigger the appearance of
aggressive effects including tissue destruction [20, 21]. The
bloodstream form of T. brucei is rich in VSG, a glycoprotein
that forms a cover of 5x106 homodimers for cell that presents
helix α A and B antiparallels, attached to the exracellular face
of the plasma membrane by means of
glycosylphosphatidylinositol (GPI) anchor which contained
mannose, glucosamine, ethanolamine and a short galactose
chain [22]. These structures are dispuested with the N-terminal
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hydrophilic extreme exposed to the extracellular space and the
C-terminal towards the plasmatic membrane. These
composition origin a structure very ordinated and packaged on
the surface of the parasite denominated VSG.

The VSG coat is a macromolecular diffusion barrier that
protects the parasite from the innate immune system and also
enables the parasite to undergo antigenic variation. Thus,
although an individual parasite only expresses one VSG gene
at a time, the parasite population can stay ahead of the host's
specific immune response to expressed VSGs when a few
parasites switch expression to one of several hundred genes
encoding immunologically distinct VSGs. This structure is
very antigenic and triggers a robust response that avoids an
efficient opsonization of the bloodstream parasites, which
prevents it from being destroyed by the mechanism of
complemented-mediated lysis [23]. VSG present GPI anchors
that can decay by parasite´s endogenous phospholipase C
(PLC), which is primarily located in the flagellar pocket and as
they think, can participate in the pathway of internalization and
recycling of VSG of membrane [24]. PLC hydrolyzes the GPI
anchor of the membrane-bound form VSG (mfVSG), trigger
the liberation of VSGs, which originates the appearance of a
pro-inflammatory response, for this reason it is involved in the
innate response [25]. PLC transform the membrane-form VSG
(mfVSG) (hydrophobic) in sVSG (water-soluble), this event
provoke the releasing of dimyristoyl glycerol (DMG) coming
from the GPI-anchor and the glycosylinositolphosphate GIP-
VSG [26]. Evidence shows the GIP-galactose is very important
in the production TNF- mediated sVSG [27]. The GIP-VSG
interact with a Type A scavenger receptor produced on
myeloid cells, that causes the activation of NF-κB and MAPK
pathways and the production of pro-inflammatory molecules,
such as TNF-α, IL-6, IL-12p40, and GM-CSF [28], also in
conjunction with IFN-γ stimulates macrophages type M1,
whose sustained activation triggers a set of inflammatory
pathologies as destruction of tissues and encephalitis that takes
place in the Central Nervous System (CNS).

The appearance of inflammatory cytokines such as IFN-γ and
TNF-α favor movement of trypanosomes from the blood to the
CNS, process that is associated with the final stages of African
trypanosomiasis. During the initial stages of the disease, PLC
causes the release of VSG of the membrane of the
trypanosomes, this origin Th1 cell response and formation of
IFN-γ; nonetheless, during an advanced stage of this infection,
continuous and sustained release of these proteins avoid the
activation and signaling of macrophages [29,30]. Infections of
mouse with wild type parasites demonstrate different patterns
of disease severity, which indicates that the appearance of an
acute or chronic infection is controlled by the change of
response type 1 (M1 macrophage activation) to response type 2
(M2 regulatory macrophage activation), together with the
formation of IL-10 and other anti-inflammatory mediators [31].

Evasion of the adaptive response

Antigenic variation
The persistence of T. brucei in the blood is possible due to its
capacity of perform the mechanism of antigenic variation, a
spectacular process that allows to evade the attack of the host´s
humoral immune system, that consists in the periodically
switching of their major variant surface glycoprotein (VSG),
that shield the cell surface from immune effectors [32]. VSG
forms a physical coat barrier that protects plasma membrane
components of the parasite from exposure to innate and
adaptive immune attack. In the course of infection in the
mammalian they are produced VSG specific antibodies that
eliminate some parasites, others escape from recognition of the
antibodies by switching expression to antigenically distinct
VSGs, that is to say, “they change their shirts” to avoid being
recognized (Figure 2) [33].

Figure 2. Antigenic variation of T. brucei.

Figure 3. Parasites multiply and suppressed by formation of
antibodies against the new antigens present on surface of T.
brucei.

This layer of VSG constitutes an excellent antigen, because is
capable of stimulating an immune response (specifically
activating lymphocytes) and provoke the production of
antibodies directed against VSG. It results in marking of the
pathogen become ingested and eliminated by phagocytes
(opsonization) and complement mediated lysis of the most
parasites, but some survive because of the modification of their
VSG coat, parasites multiply again and are suppressed by the
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formation of antibodies against the new antigens presents on
the surface of T. brucei (Figure 3) [34].

These mechanisms of expression and dynamic replacement of
VSG are a classic example of adaptive evolution at the host-
pathogen interaction. The transcription begins at the same time
in all VSG ESs (VSG expression sites), but only one
expression site is fully active at a time, that encodes the current
coat homogeneous, that is composed of about 107 VSGs by
parasite. The others are silenced from a genomic repertoire of
around 2000, this is because each VSG is encoded by a
separate gene [35, 36].

Humoral response
Because AT are extracellular it is logic to think that it occurs a
preponderant humoral response, with a marked polyclonal B
cell activation, demonstrated by an increment in the amount of
B cells and an evident increment of the quantity of IgG in
plasma [37,38]. The antibody produced are polyspecific or
auto-reactive [39,40].

During early infection T. brucei leads to a decrease of the
response of humoral type, this impact over B cells occurs at
distinct points: a) it shoots a non-specific, polyclonal B-cell
activation, b) take place elimination of the splenic B cell, this
can be verified through the decreased of marginal zone and
follicular B cell compartments, c) elimination of FoBs
mediated by IFN-γ, this produces a loss of B cell
responsiveness and eliminate protective memory responses, d)
during the infection of T. brucei the B lymphopoiesis is
truncated by apoptosis in the bone marrow and spleen already
at the level of transitional B cells [41,42].

The antibody-mediated trypanotolerance it is supported by
specific antibodies directed against the trypanosome VSG, who
are involved in the destruction of trypanosomes in periodic
parasitemic waves [43]. Studies realized with animals
immunized with VSG or irradiated trypanosomes have been
detected protection of the infection with homologous parasites
[44]. The antibodies produced specifically against VSG
opsonize the parasites, a signaling that allows fagocytosis and
elimination by the macrophages [45].

In the process of infection by AT the responses of B cells
against VSG may generate in a form T-cell independent [46].
The initial stage of the AT infection is characterized by the
formation of specific antibodies against trypanosome that
destroy some parasites; however, there is a high percentage of
polyspecific antibodies [47]. During the course of late infection
the B-cells go through a process of deregulation, where they
are removed, that leads to a removal of IgG responses and
greatly decreased IgM response [48].

Antibody clearance
In addition to antigenic variation, the trypanosomes
redistributed surface bound antibodies to the flagellar pocket,
in a process known as capping [49]. The VSG coat acts as a
physical barrier, serves to protect invariant surface proteins
from components of immune effectors [50]. The trypanosomes
performed a process of endocytosis that origin the elimination

of complex antibody/VSG and allows the evasion of the attack
of defense system and the multiplication of parasites in blood.

The VSG cover is internalized using the endocytic process in a
short time lapse, and this mechanism occurs in the flagellar
pocket [51]. VSG-antibodies are taken inside the parasite; the
antibodies are transported to the lysosome and later destroyed
[52]. VSG are selected from the rest of proteins in the
endosome, apparently through of sorting of GPI-anchored
proteins to the recycling pathway, this favors the removal of
antibodies of the trypanosome coat. The complex antibody-
bound VSG prevents the activation of the complement and
ultimately the membrane attack complex, thus avoiding the
lysis of the parasites [53].

Immunosuppression
The infections generated by AT produce an amazing
immunological suppression, that induce wide deregulation of
humoral and cellular functions, mediated by B cell, T-cell and
macrophages, respectively, which triggers a series of
pathological disorders characteristic of African
trypanosomiasis [54,55].

According to some investigations, macrophages and T cells
effect the immunosuppression, during this process can observe
blocking of the T cell multiplication through the elimination of
the IL-2 apparition and production of IL-2 receptor [56,57]. T.
brucei infection inhibits the presentation of antigen of MHC
class II, which generates a decrease in the activation of T cells
[58]. In the advanced stage of the disease, macrophages induce
the appearance of anti-inflammatory cytokines, such as IL-10
that suppress the presentation of antigen and alter the
activation of T cells [59].

Conclusions
T. brucei is a fabulous and surprising microorganism, which
has developed numerous tools to escape the immune defense
system of their vertebrate host. The survival of these parasites
in mammalian bloodstream depend on an extremely
sophisticated strategy denominated antigenic variation, an
essential event through which they switch periodically the
VSG coat, that is, “they change their shirts” to avoid the
destruction mediated by host´ humoral response.

The attack of antibodies anti-VSG causes the death of some
parasites, instead others survive because they switch the VSG
cover by other different that is not recognized by the antibodies
produced in that moment; for this reason, AT have been
considered masters of disguise. These parasites dramatically
modify the activation of macrophages and other antigen
presenting cells, what induces to a production of Th1
proinflammatory cytokine as TNF-α, IL-6 and NO production.
The VSG of these parasites provoke an imbalance in the profile
of cytokines, evidenced by overproduction TNF-α by
macrophages, that is to say, the trypanosomes manipulated the
effector functions of immune system for its convenience and
survival in the mammal, which allows its transmission to the
vector insect and thus complete its life cycle.
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