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Introduction
It is useful to summarize some of the mathematics of 

derived priority scales involved in the multicriteria decision 
process, and give the corresponding generalization to the 
continuous case.  First we examine the solvability of a 
system of linear algebraic equations given in matrix form. 
The homogeneous system 0=Ax  has a non-zero solution if 
A  has no inverse 1−A  with 1 1AA A A I− −= = , where A is 

the identity matrix and hence the determinant of A  is equal 
to zero. The inhomogeneous system =Ax y  has a solution 

1−=x A y  if 1A−  exists. This means that the determinant of 
A is not zero. We recall that an eigenvalue λ of A is a root of 
the characteristic equation of A and that a right eigenvector  
of A is a solution x of the equation λ=Ax x. This can also 
be written as ( ) 0.I A xλ − =  A homogeneous eigenvalue 
system ( ) 0I A xλ − =  has a solution if the determinant 
of ( )λ −I A  which is a polynomial (the characteristic 
polynomial) in λ is equal to zero which is true only if λ is 
a zero of that polynomial. That value of λ is an eigenvalue 
of the matrix A. The inhomogeneous system ( )I A x yλ − =  
has a solution 1x ( )I A yλ −= −  if 1( )λ −−I A  exists which 
it does only when λ is not an eigenvalue of A. The set of 
eigenvalues of A is the spectrum of A. It is clear that A is the 
kernel or focus that provides the conditions for the system of 
equations to have or not have a solution. These ideas will be 
relevant in the ensuing generalization to the infinite case.

Our approach uses absolute numbers, invariant under 
the identity transformation. We must filter or interpret the 
intensities of magnitudes of numbers in terms of our own 
sense of importance. We can use absolute numbers to construct 
a fundamental scale of priorities across all dimensions of 
experience by making paired comparisons of two elements 
at a time using the smaller one as the unit and estimating the 
larger one as a multiple of that unit with respect to a common 
property or criterion that they have in common. From such 

paired comparison, we can then derive an overall priority 
scale of relative importance for all the elements. Finally, 
we combine such priority scales with respect to different 
criteria by weighting each by the weight of the corresponding 
criterion and adding over the criteria to obtain a priority scale 
of measurement for all the elements with respect to all the 
criteria. One cannot escape the fact that one can only add and 
multiply such priority scale numbers, but not with numbers 
that belong to ordinal or interval scales nor to ratio scales 
that need a standard unit for measuring all priorities. The 
expression we encountered for deriving an absolute scale to 
make pairwise comparisons applies to the case of making a 
finite number of judgments is: 

max

n

ij j i
j = 1

   =  a w wλ∑                                                       (1)

with aji=1/aij or aij aji=1 (the reciprocal property), a ij>0 
(thus A is known as a positive matrix) whose solution is 
normalized so that,

1

1
=

=∑
n

i
i

w                                                                               (2)

When /ij jk ika a a=  the matrix ( )= ijA a  is consistent 
and its maximum eigenvalue is equal to n. Otherwise, it is 
simply reciprocal. A is consistent if and only if /ij i ja w w= . 
This is the central ratio scale property of a consistent matrix. 
What is powerful about a ratio scale when dealing with 
tangibles is that in normalized form it has the same value no 
matter what is its original multiplier. Thus two batches of 
bananas that weigh 3 and 6 kg, on normalization, have the 
relative weights 3/(3+6)=1/3 and 6/(3+6)=2/3. These two 
batches also have the weight in pounds of 6.63 and 13.26, 
respectively. When normalized, these weights are again 
6.63/(6.63+13.26)=1/3 and 13.26/(6.63+13.26)=2/3. Thus, 
when normalized, ratio scales reduce to a standard form. In 
addition, the ratio of two numbers taken from the same ratio 
scale is an absolute number.  
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If A is simply reciprocal and positive, but not consistent 
that is ij jk ika a a≠ does not hold for some i, j and k and we 
must have:

    0i
ij ij ij ij

j ji

1w  =   ,   =  ,  > a
w

ε ε ε
ε
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                          (3)                                 

A left eigenvector  y of A is a solution of the equation 
.yA yλ=  For a consistent matrix, the corresponding entries 

of the normalized left and right eigenvector s are reciprocals. 
The reason why we used the principal right eigenvector  only 
in the discrete case, is because in making paired comparison 
judgments one must identify the smaller or lesser element 
and use it as a unit and then estimate how many times of that 
unit the larger element dominates it in value. We cannot tell 
what fraction of the larger element the smaller one is without 
first using it as the unit. Knowing that the left and right 
eigenvector s are reciprocals when we have consistency will 
be useful in the continuous case where if we wish we could 
construct two matrices corresponding to each of the left and 
right eigenfunctions approaches.

We note that the reciprocal axiom of paired comparisons 
involves division. Because making comparisons is:

1) The most fundamental principle in relating entities for 
better understanding, 

2)The brain works with electric signals that need 
complex numbers for explanation and understanding. 
These signals can be measured and compared again 
using reciprocal comparisons, and 

3) Also perhaps the brain works at its synapses with signals 
whose chemical nature is not yet fully understood that 
again can be compared according to their relative 
intensities and involve paired reciprocal comparisons. 
It is necessary for conscious understanding of 
phenomena according to the accurate workings of 
the brain in making comparisons that division should 
always be possible. This leads us to a brief discussion 
of division algebras and hyper-complex numbers.

In 1898 Adolf Hurwitz proved there are exactly four 
normed division algebras: the real numbers (R), the complex 
numbers (C), the quaternions (H) and the octonions (O). 

Immediately beyond those four are the sedenions and 
beyond (in fact, one can get an algebra of 2n for any non-
negative n), but these algebras are perhaps less interesting 
because they are no longer division algebras—that is, 

0ab =  no longer implies that either 0=a or 0.b =  
Quaternions, discovered by the Irish mathematician William 
Rowan Hamilton in 1843 are an alternative method of 
handling rotations, besides rotation matrices. The advantage 
of quaternions over other representations is that they allow 
interpolation between two rotations. Another way to say what 
special about 2 dimensions are is that rotation commutes, but 
not in 3 or more dimensions. Thus, there is advantage to the 
fact that quaternions do not commute. Inspired by Hamilton, 
John T Graves, from Britain discovered in 1843 what he 

called the octaves (later called octonions) and communicated 
by mail to Hamilton who promised him to take it up before 
the Academy in Dublin, but forgot to do it immediately. They 
were discovered independently and published first in 1845 
by Arthur Cayley. Octonions were sometimes referred to as 
Cayley numbers or the Cayley algebra. 

With quaternions we lose the commutative law, with 
octonions we also lose the associative law. It was the 
prodigious Hamilton who first noticed that multiplication 
of octonions is not associative, that is, ( )× ×a b c  does not 
equal to ( ) .× ×a b c  The main thing we are left with is the 
ability to divide in order to give meaning to proportionality. 
The solutions to our operator equation do not extend to 
quaternions and octonions when the parameters and the 
variables belong to these algebras. An exception is when they 
are real or complex.

Let us generalize further the mathematics of the 
fundamental idea of an infinite number, a continuum, of 
pairwise comparisons [1].   This leads us from the solution 
of a finite system of homogeneous equations or alternatively, 
and according to the theory of Perron, to raising a positive 
reciprocal pairwise comparisons matrix to limiting powers 
to obtain its principal eigenvector , to the solution of a 
Fredholm equation of the second kind to obtain its principal 
eigen function. A necessary condition for the existence 
of this eigen function ( )w s is that it is the solution of the 
functional equation ( ) ( )w as bw s=  Surprising and useful 
properties of this solution emerge and are related to how 
our brains respond to stimuli through the electrical firing of 
neurons and how bodies in the universe responding to each 
other’s influence satisfy a near inverse square law discovered 
in physics - the principle that responding to influences in a 
manner that satisfies a natural law is an attribute of all things 
be they material or mental. We believe that it is the kind of 
understanding that drove the very insightful Julian Huxley 
[Man in the modern world (1947)] to write that “something 
like the human mind might exist even in lifeless matter.” It 
is the vital force called Qi that in Taoism and other Chinese 
thought is thought to be inherent in all things. The unimpeded 
circulation of Qi and a balance of its negative and positive 
forms in the body are held to be essential to good health 
in traditional Chinese medicine. Thus all things that exist 
respond to stimuli to a larger or smaller extent as our mind 
does.

The idea to generalize the formulation of the judgment 
process to the continuous case, to Fredholm’s equation of the 
second kind is carried out in two ways. The first is by starting 
from the beginning to develop the equation. The second is 
by generalizing the discrete to the continuous formulation. 
Both yield the same answer. It turns out that the functional 
equation ( ) ( )w as bw s= (which we developed several 
years prior to this analysis through the intuitive observation 
about the proportionality of response to stimuli ( ) ( )∝w as w s ) 
as a necessary condition for the existence of a solution to 
Fredholm’s equation. I worked with one of the world’s leading 
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mathematician in functional equations, Janos Aczel of the 
University of Waterloo, with whom I had published a paper 
showing that the geometric mean is necessary for combining 
individual reciprocal judgments into a representative group 
judgment [2]. This result I had already known and used in my 
works without a comprehensive proof. Aczel was both my 
helper and tutor in pressing forward in my work using this 
rather simple but powerful functional equation to continue 
the generalization of the process of decision making to the 
continuous case. Finally, my generalization of the linear 
equation ( ) ( )w as bw s=  to an equation in operators 
involving functions rather than variables, whose solution was 
once said to be very difficult to obtain, was actually solved 
by Nicole Brillouet-Belluot of the École Centrale de Nantes, 
France [3]. Her solution has useful implications for relating 
our judgment mechanism to all works in science because it 
directs us to define the world as we sense and experience it 
to the response organs we have in our nervous system and 
imagination to grasp its meaning. 

Density and Approximation 
The utility of artificial neural network models lies in the 

fact that we use them to infer a function from observations. 
The brain itself has its system to determine the functions it 
needs to capture its perceptions and thoughts.

Approximation theory is concerned with approximating 
functions by simpler and more easily calculated functions. 
The first question we ask in approximation theory concerns 
the possibility of approximation. Is the given family of 
functions that we use for approximation dense in the set of 
functions to be approximated? Although continuous functions 
contain many pathological examples and deficiencies, every 
such function can be approximated arbitrarily close by 
polynomials, considered the best kind of smooth function. 
Approximation is about how general functions can be 
decomposed into more simple building blocks: polynomials, 
splines, wavelets, and the like. One needs to guarantee 
specified rates of convergence when the smoothness of the 
kind of functions being approximated is specified, such as 
in Sobolev or Lipschitz spaces. A function f (x) belongs to a 
Lipschitz class Lip[α] if there exists a constant C>0 such that 
|f (x) – f (y)| ≤ C |x-y|α.

The General Problem of Approximation: Let x be a 
metric space and k a subset of x. For a given point xÎ X 
define d (x,k)=inf d (x,y) for y in k. The general problem of 
approximation is to find whether such a y exists for which 
the infimum is attained, and to determine whether it is unique 
or not. An element y0 Îk for which the infimum is attained is 
called an element of best approximation to the element xÎ

X (or simply, a best approximation). An alternative way of 
defining the problem is as follows: Let X is a normed linear 
space and Y a subspace of X. Given an element xÎX, we 
wish to determine d (x,y)=inf ||x-y|| for y in Y and study the 
existence and uniqueness of the element(s) y0, for which 
||x-y0||=d (x,y). The Fundamental Theorem of Approximation 
Theory (5) states that if Y is a finite dimensional subspace of 

a normed linear space X, then there always exists an element 
y0 Î Y of best approximation for each xÎ X. However, the 
element of best approximation may not be unique. Uniqueness 
can only be guaranteed if X is a strictly normalized space, i.e.:

1 2 1 2 2 1| | | | | | holds only for x x ,( 0)+ = + = ≥x x x x a a

The Weierstrass approximation theorem proved by Karl 
Weierstrass in 1885 says that a continuous function on a 
closed interval can be uniformly approximated as closely 
as desired by a polynomial function. The degree of the 
polynomial depends on the function being approximated 
and on the closeness of the approximation desired. Because 
polynomials are the simplest functions and computers can 
directly evaluate polynomials, this theorem has both practical 
and theoretical relevance. Weierstrass also proved that 
trigonometric polynomials are also be used to approximate to 
a continuous function that has the same value at both end point 
of a closed interval. That is trigonometric polynomials are 
dense in this class of continuous functions. Each polynomial 
function is approximated uniformly by another polynomial 
with rational coefficients. There are only countably many 
polynomials with rational coefficients.

For complex analysis, Mergelyan proved in 1951 that: 
If K is a compact subset of the complex plane C such that 
C\K (the complement of K in C) is connected, then every 
continuous function f: K→ C whose restriction to the interior 
of K is holomorphic, can be approximated uniformly on K 
with polynomials. It has been noted that Mergelyan's theorem 
is the ultimate development and generalization of Weierstrass 
theorem and Runge's approximation theorem in complex 
analysis which says that: If K is a compact subset of C (the 
set of complex numbers), A is a set containing at least one 
complex number from every bounded connected component 
of C\K, and f is a holomorphic function on K, then there exists 
a sequence (rn) of rational functions with poles in A such that 
the sequence (rn) approaches the function f uniformly on K. 
It gives the complete solution of the classical problem of 
approximation by polynomials.

In the case that C\K is not connected, in the initial 
approximation problem the polynomials have to be replaced 
by rational functions. An important step of the solution of this 
further rational approximation problem was also suggested 
by Mergelyan in 1952.

Marshall H Stone considerably generalized the theorem 
and later simplified the proof; his result is known as the 
Stone-Weierstrass theorem. Let K be a compact Hausdorff 
space and A is a sub algebra of ( , )C K R which contains a 
non-zero constant function. Then A is dense in ( , )C K R if, 
and only if, it separates points. 

This implies Weierstrass' original statement since the 
polynomials on [ , ]a b  form sub algebra of [ , ]C a b  which 
separates points.

But the problem of approximation is even simpler in 
conception. David Hilbert noticed that all basic algebraic 
operations are functions of one or two variables. So, he 

http://www.findword.org/po/polynomial.html
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formulated the hypothesis that not only one cannot express 
the solution of higher order algebraic equations in terms of 
basic algebraic operations, but no matter what functions of 
one or two variables we add to these operations, we still 
would not be able to express the general solution. Hilbert 
included this hypothesis as the 13th of his list of 23 major 
problems that he formulated in 1900 as a challenge for the 
20th century.

This problem remained a challenge until 1957, when 
Kolmogorov proved that an arbitrary continuous function 

1( ,... )nf x x  on an n-dimensional cube (of arbitrary 
dimension n) can be represented as a composition of addition 
of some functions of one variable. Kolmogorov’s theorem 
shows that any continuous function of n dimensions can be 
completely characterized by a one-dimensional continuous 
function. This is particularly useful in interpreting how the 
brain, which consists of separate neurons, can deal with 
multiple dimensions by synthesizing information acquired 
through individual neurons that process single dimensions. 
Kolmogorov's powerful theorem does not guarantee any 
approximation accuracy and his functions are very non-smooth 
and difficult to construct. In 1987, Hecht-Nielsen noticed 
that Kolmogorov’s theorem actually shows that an arbitrary 
function f can be implemented by a 3-layer neural network 
with appropriate activation functions. The more accurately 
we implement these functions, the better approximation to f 
we get. Kolmogorov's proof can be transformed into a fast 
iterative algorithm that converges to the description of a 
network, but it does not guarantee the approximation accuracy 
by telling us after what iteration we get it.

The existence of a neural network that approximates any 
given function with a given precision was proven by Hornik, 
Stinchcombe and White. The utility of artificial neural 
network models lies in the fact that they can be used to infer 
a function from observations. This is particularly useful in 
applications where the complexity of the data or task makes 
the design of such a function by hand impractical. Neural 
nets have been successfully used to solve many complex and 
diverse tasks, ranging from autonomously flying aircrafts to 
detecting credit card fraud.

In the artificial intelligence field, artificial neural networks 
have been applied successfully to speech recognition, image 
analysis and adaptive control, in order to construct software 
agents (in computer and video games) or autonomous robots. 
Most of the currently employed artificial neural networks 
for artificial intelligence are based on statistical estimation, 
optimization and control theory.

Neural networks, as used in artificial intelligence, have 
traditionally been viewed as simplified static models of 
neural processing in the brain, even though the relation 
between this model and brain biological architecture is very 
much debated. To answer this question, Marr has proposed 
various levels of analysis which provide us with a plausible 
answer for the role of neural networks in the understanding of 
human cognitive functioning.

The question of what is the degree of complexity and 
the properties that individual neural elements should have in 
order to reproduce.

Neural networks are made of units that are often assumed 
to be simple in the sense that their state can be described 
by single numbers, their "activation" values. Each unit 
generates an output signal based on its activation. Units are 
connected to each other very specifically, each connection 
having an individual "weight" (again described by a single 
number). Each unit sends its output value to all other 
units to which they have an outgoing connection. Through 
these connections, the output of one unit can influence the 
activations of other units. The unit receiving the connections 
calculates its activation by taking a weighted sum of the input 
signals (i.e., it multiplies each input signal with the weight 
that corresponds to that connection and adds these products). 
The output is determined by the activation function based 
on this activation (e.g. the unit generates output or "fires" if 
the activation is above a threshold value). Networks learn by 
changing the weights of the connections.

In modern software implementations of artificial neural 
networks the approach inspired by biology has more or less 
been abandoned for a more practical approach based on 
statistics and signal processing. In some of these systems, 
neural networks, or parts of neural networks (such as artificial 
neurons) are used as components in larger systems.

Generalizing from Discrete to Continuous 
Judgments

Although we believe that the continuous version described 
below came first through our biological evolution, the way 
we learn things in general goes from the simple to the more 
complex in order that our analytical minds can lay things out 
according to increasing order of complexity. To survive in 
the real world we have to make comparisons among a myriad 
of entities. It is easier for us to deal with the solution of the 
comparisons problem by going from the simpler to the more 
complex.

In this generalization it turns out that the functional 
equation ( ) ( )=w as bw s is a necessary condition for 
Fredholm’s integral equation of the second kind to have a 
solution. Instead of a pairwise comparisons matrix one uses 
the kernel of an operator. Operations on the matrix translate 
to operations on the kernel. From the matrix formulation 
leading to the solution of a principal eigenvalue problem: 

max1 1
, 1n n

ij j i ij i
a w w wλ

= =
= =∑ ∑

we have

max( ) ( ) ( )
b

a

  K s,t  w t  dt  =   w sλ∫
or for both discrete equations above we have,

( ) ( ) ( ),   ( ) 1λ∫ ∫
b b

a a

 K s,t w t dt  =  w s   w s ds  =  
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where the positive matrix A is replaced by a positive 
kernel ( , ) 0,K s t > ,a s t b≤ ≤ and the eigenvector  w by 
the eigen function ( ).w s  Note that the entries in a matrix 
depend on the two variables i and j that assume discrete 
values. Thus the matrix itself depends on these discrete 
variables and its generalization, the kernel function, depends 
on two (continuous) variables s and t. The reason for 
calling it a kernel is the role it plays in the integral, where 
without knowing it we cannot determine the exact form of 
the solution. The standard way in which the first equation is 
written is to move the eigenvalue to the left hand side which 
gives it the reciprocal form. In general, by abuse of notation, 
one continues to use the symbol λ to represent the reciprocal 
value and with it one includes the familiar condition of 
normalization,

( ) 1.∫
b

a

  w s ds  =  

Here also, the kernel K (s,t) is said to be 1) consistent 
and therefore also reciprocal, if K (s,t) K (t,u)=K (s,u), for 
all s, t and u, or 2) reciprocal, but perhaps not consistent, if 

( , ) ( , ) 1 for all , .K s t K t s s t=  

A value of λ for which Fredholm’s equation has a nonzero 
solution w (t) is called a characteristic value (or its reciprocal 
is called an eigenvalue) and the corresponding solution is 
called an eigen function. An eigen function is determined to 
within a multiplicative constant. If w (t) is an eigen function 
corresponding to the characteristic value λ and if C is an 
arbitrary constant, we see by substituting in the equation that 
Cw (t) is also an eigen function corresponding to the same λ. 
The value =0 is not a characteristic value because we have 
the corresponding solution w (t)=0 for every value of t, which 
is the trivial case, excluded in our discussion. 

Thus, we select an interval of time [a,b] and our 
convention will be to choose a=0. Let 0=t0<t1<...<tn-1<tn=b be 
a partition of the interval [0,b], Ik=tk – tk-1 , k=1, 2, ..., n. Let w 
(t), [ , ]t a b∈  be a single firing (voltage discharge) of neuron 
in spontaneous activity. In simple terms, if ( ), [0, ]G t t b∈
is the cumulative response of the neuron in spontaneous 

activity over time, given by 
0

( ) ( ) ,  ( ) / ( )= =∫
t

G t w u du G t dt w t  

where ( )w t dt is the response during an infinitesimal period 
of time. Note that G (t) is monotone increasing and hence w 
(t)>0 and w(0)=0. Let 

1

1

( )
( ) ( )
( ) ( )

, i i

j j

i jK I I
G t G t
G t G t

−

−

≡
−

−

be the relative comparison of the response of a neuron 
during a time interval of length .jt∇ with another time interval 
of length .jt∇  

Cross multiplication and summation over j 
yields

1 1
1

1 ( , )[ ( ) ( )] ( ) ( ), 1,2,..., .
n

i j j j i i
j

K I I G t G t G t G t i n
n − −

=

− = − =∑          (4)        

If G (t) is of class 
1[0, ]C b , then as 0kt∆ →  for all

K ( I i, Ij) →K ( s, t ) =w( s ) / w(t ), s, t ∈ [0, b]

Also because the left-hand side of (1) is an average, we 
obtain as 0kt∆ → for all k, and as n→∞

1 ( , ) ( ) =∫
b

a

K s t w t dt ws
b
It is easy to show that b is the principal eigenvalue (i.e., 

the largest in absolute value) of the consistent kernel K (s, t) 
because all the other eigenvalues are zero (the eigenfunctions 
being any function orthogonal to w (t) on [0, b] In general, 
if ( , )i jK I I   K (Ii, Ij) is reciprocal but not consistent, the 
homogeneous equation takes the form 

0( ) ( , ) ( )
b

a

w s K s t w t dtλ= ∫
or in operator form

0 2( ) 0,    λ− = ∈I K w w L

where I is the identity operator and K is a compact 
integral operator defined on the space 2[0, ]L b of Lebesgue 
square integrable functions: 

2
0

( ) ( , ) ( ) , [0, ]
b

Kf s k s t f t dt f L b= ∈∫
Because positive reciprocal kernels are non-factorable 

(the property that corresponds to irreducibility for non-
negative matrices), there exists a unique positive simple 
eigenvalue 

0

1λ− whose modulus dominates the moduli of all 
other eigenvalues.

As in the discrete case, there is an eigen function w (s) 
that is unique to within a multiplicative constant, which 
corresponds to the simple maximum positive eigenvalue

0

1λ− ; w(s) is called the response function of the neuron in 
spontaneous activity. 

From ( , ) 0, (0, ) 0, 0> = ≠K s t K t t , it follows that 
( ) 0 for 0w s s> ≠  and w (0)=0 [4]. If the reciprocal kernel 
( , ) 0≥K s t on 0 ,s t b≤ ≤ , is Lebesgue square integrable 

and continuously differentiable and if lim ( , )K s t
ξ

ξ ξ
→∞

exists, 
then

( ) ( )

0

( ) /
b

g t g tw t t e t e dtα α= ∫                                              (5)          

satisfies 0( ) ( , ) ( )λ= ∫
b

a

w s K s t w t dt  for some choice of 

g (t). This solution assumes that the comparison process is 
continuous, but it is not meaningful to compare the response 
during an interval of length zero with the response during 
a non-zero interval no matter how small it is, for then 
the reciprocal comparison would be unbounded. From a 
theoretical standpoint, one can study the problem using 
Lebesgue integration and allowing only one zero. 

Because linear combinations of the functions 
{ , , 0}tt eα β α β− ≥

1

i i

n
t

k
i

t eα βγ −

=
∑

are dense in the space of bounded continuous functions 
C[0, b] we can approximate tt eα β− by linear combinations 
of tt eα β− and hence we substitute ( ) , 0g t tβ β= − ≥ in 
the eigen function w (t). Later we will see that such linear 
combinations are dense in even more general spaces worthy 

K ( I  , I   ) →ijK ( s, t ) =w( s ) / w(t ), s, t ∈ [0, b]
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of consideration in representing neural responses to stimuli. 
The density of neural firing is not completely analogous to 
the density of the rational numbers in the real number system. 
The rationales are countable infinite; the number of neurons is 
finite but large. In speaking of density in a field here, we may 
think of coming sufficiently close (within some prescribed 
bound rather than arbitrarily close).

Theorem 1: K (s,t) is consistent if and only if it is 
separable of the form:

( , ) ( ) / ( )=K s t k s k t

Proof (Necessity) K (t, u0)≠0 for some u0∈S, otherwise 
K (t, u0)=0 for all u0 would contradict K (u0, u0)=1 for t=u0. 
Using K (s,t) K (t,u)= K (s,u), for all s, t and u, we obtain

0 0( , ) ( , ) ( , )K s t K t u K s u=

0

0

( , ) ( )( , )
( , ) ( )

= =
K s u k sK s t
K t u k t

for all 0u S∈  and the result follows.

(Sufficiency) If K (s,t)=k (s)/k (t) holds, then it is clear 
that K (s,t) is consistent.

We now prove that as in the discrete case of a consistent 
matrix, whereby the eigenvector  is given by any normalized 
column of the matrix that an analogous result obtains in the 
continuous case.

Theorem 2: If ( , )K s t  is consistent, the solution of 

( ) ( ) ( )
b

a

 K s,t w t dt  =  w sλ∫ is given by 
( )( )
( )

S

k sw s
k s ds

=
∫

Proof We replace w (t) in ( ) ( ) ( )
b

a

 K s,t w t dt  =  w sλ∫ by 

( ) ( )λ∫
b

a

 K s,u w u du inside the integral and repeat the process 

n times. Passing to the limit we obtain: 

1 1 2 1 1( ) lim ... ( , ) ( , )... ( , ) ...n
n n nn

S S S

w s K s s K s s K s s ds dsλ −→∞
= ∫ ∫ ∫

Since K (s,t) is consistent, we have:

1( ) lim ... ( , ) ... lim ( , )n n
n n n nn n

S S S S

w s K s s ds ds K s s dsλ λ
→∞ →∞

= =∫ ∫ ∫ ∫

With  we have

( ) lim ( , ) / lim ( , )

lim[ ( , ) / ( , ) ]

n n n nn n
S S S

n n n nn
S S S

w s K s s ds K s s ds

K s s ds K s s ds

→∞ →∞

→∞

=

=

∫ ∫ ∫

∫ ∫ ∫
Also, because K (s, sn) is consistent we have K (s, sn)=k 

(s)/k (sn) and 
( )( ) ( )
( )

α= =
∫
S

k sw s k s
k s ds

In the discrete case, the normalized eigenvector  was 
independent of whether or not all the elements of the pairwise 
comparison matrix A are multiplied by the same constant 
a, and thus we can replace A by aA and obtain the same 

eigenvector . Generalizing this result to the continuous case 
we have:

( ) ( ) ( ) ( ) ( ) ( ),  , /  /K as at aK s t k as k at a k s k t= = =

This means that K is a homogeneous function of order 
one. Because K is a degenerate kernel, we can replace k (s) 
above by k (as) and obtain w (as).

To prove that ( ) ( )=w as bw s  from 
( )( )
( )

k sw s
k s ds

=
∫

and 
( ) ( )
( ) ( )

k as k sa
k at k t

= , we first show that 
( ) ( )
( ) ( )

=
w as w s
w at w t

Integrating both terms of 
( ) ( )
( ) ( )

k as k sa
k at k t

=  first over s, we 

have ( ) ( )
( ) ( )

=∫ ∫k as ds k s ds
a

k at k t
. Next, rearranging the terms and 

integrating over t, to obtain
( ) ( ) ( ) ( )k as ds k t dt a k s ds k at dt=∫ ∫ ∫ ∫  which implies that 

( ) ( )
1

( ) ( )

k s ds k at dt
a

k as ds k t dt
=∫ ∫

∫ ∫
. Thus,

( ) / ( ) ( ) / ( ) ( ) ( )( )
( ) ( ) / ( ) ( ) / ( ) ( ) ( )

k as k as ds k s k s ds k at dt k s dsw as a
w at k at k at dt k t k t dt k as ds k t dt

= =∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

( ) / ( ) ( )
( )( ) / ( )

k s k s ds w s
w tk t k t dt

= =∫
∫

Assuming that the domain of integration is bounded 
or at least measurable, by integrating ( )( ) ( )

( )
w sw as w at
w t

=  

over t we have ( )( ) ( )
( )Ω Ω

=∫ ∫
w atw as dt w s dt
w t

 and writing 

1 ( )
( )

w atb dt
w tdt Ω

Ω

= ∫∫
, we have w (as)=bw (s).

We have thus proved Theorem 3.

Theorem 3: A necessary and sufficient condition for w(s) 
to be an eigen function solution of Fredholm’s equation of the 
second kind, with a consistent kernel that is homogeneous of 
order one is that it satisfy the functional equation w (as)=bw (s).

Solutions of the functional equation

 W (as)=bw (s)

Real domain: If we substitute s=au in w (as)=bw (s)we 
obtain: 

W (au+1)-bw (au)=0

Again if we write w (au)=bup (u), we obtain:

P (u+1) – p (u)=0

This is a periodic function of period one in the variable 
u (such as cos 2πu). Note that if a and s are real, then so is u 
which may be negative even if a and s are both assumed to 
be positive.

If in the last equation p (0) is not equal to 0, we can 
introduce C=p (0) and P (u)=p (u)/C, we have for the general 
response function w(s),
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log loglog log log
  s   s  b w(s)  =   P Ce   a   a

 
  
 

where P is also periodic of period 1 and P (0)=1. Note that 
C>0 only if p (0) is positive. Otherwise, if p (0)<0, C<0. As for 
the other solutions below, the product of two such functions 
is a similar function. Linear combinations of such functions 
are dense in the most general spaces known, e.g. like Sobolev 
spaces. The brain synthesizes the firing functions generated 
by the senses and other organs and from thought processes 
into a general degree of overall feeling of satisfaction and 
dissatisfaction. Thus we coin a new word to represent the 
variety and synthesis, we call the brain UNIVARIANT.

Complex domain: Note in the foregoing solution in the real 
domain that near zero, the exponential factor which is equal to 
slog b/log a, "slims" w (s) if log b/log a>0 and "spreads" w (s) if log 
b/log a<0. Because s is the magnitude of a stimulus and cannot 
be negative, we do not have a problem with complex variables 
here as long as both a and b are real and both positive. Our 
solution in the complex domain has the form:

(ln / ln ) ln / ln( ) ( )= b a z aw z z P
Here P (u) with u=ln z/ln a, is an arbitrary multivalued 

periodic function in u of period 1. Even without the multi-
valuedness of P, the function w (z) could be multivalued because 
ln b/ln a is generally a complex number. If P is single-valued 
and ln b/ln a turns out to be an integer or a rational number, 
then w (z) is a single valued or finitely multivalued function, 
respectively. This generally multivalued solution is obtained in 
a way analogous to the real case. Similarly, the general complex 
solution of our functional equation is given by:

( ) ( )| |[log / log | |]= z aw z Cb g z
where C>0. The brackets [ ] in the above expression 

denotes the “closest integer from below” function and g is an 
arbitrary solution of g (az)=g (z). 

Our solution which represents response to a force that 
serves as a stimulus is general and has applicability to all 
phenomena whose measurement is based for example, on 
ratio scales as in physics. When we speak of response subject 
to ratio scales, it is not only response of the brain to a stimulus, 
but also the response of any object to a force or influence to 
which it is subject. 

We have seen that the firing function of a neuron is the 
product of a negative exponential and a periodic function of 
period one so that we have ( ) ( ).sv s Ce P sβ−=  Periodicity 
is damped by the exponential. The periodic function P (s) 
depends on changes in the intensity and hence the amplitude 
and not on the frequency. It corresponds to what is known in 
acoustics as periodicity pitch. At the end of each period its 
vibration gives rise to a firing followed by a resting period. 
Its periodic firing is made to happen through synapses with 
different other neurons whose message may sum to excitation 
of the given neuron or to inhibition.

The firing threshold of a neuron serves as a buffer 
between neurons. A stimulus received by a neuron from other 

neurons requires that the given neuron fire or not according 
to its natural response function with its natural frequency 
of repeated firings corresponding to the intensity of that 
stimulus. Thus the firings of a neuron are determined by its 
characteristic eigen function, nothing else.

One form of our solution shows that there can be a part 
of the brain that thinks analytically, as we know there is. It 
is the part that is concerned with thinking and explaining. 
When we deal with electrical phenomena, we have no choice 
but to use complex variables unless we do not want to use the 
full information obtained. We must use complex variables to 
capture both: magnitude and frequency, phase or angle.

We note that we are in the habit of thinking of a stimulus 
in terms of its intensity represented by its modulus, which 
makes up half the story. However, neural response to a 
stimulus described in terms of real number magnitudes or 
in terms of its electrical character that involves amplitude 
and phase, must itself be expressed through electric charges 
involving the arithmetic of complex numbers with subtleties 
not encountered with real numbers.

The action of several synapses that involves the 
summation of many complex numbers eventually leads to 
(damped) periodic behavior, and because a finite sum of 
periodic functions is almost periodic, to an almost periodic 
behavior. The most compelling argument for such complex-
number periodic and hence frequency oriented, representation 
by synapses is that the brain can apply the Fourier transform 
to each term and sum the result to give us the space-time 
representation of the synthesis when appropriate thus making 
consciousness possible. Our approach assumes that each 
postsynaptic membrane contributes one term of a series 
representation and always contributes to forming that precise 
term. That ions arriving at the postsynaptic membrane by 
passing through the synaptic cleft and thus are subject to 
randomness, does not affect the final synthesis for that 
membrane to alter its contribution. Even the absence of the 
term contributed by a postsynaptic membrane does not have 
such an influence because it is but one term in a series of 
many such terms and does not affect the transformed and 
summed outcome appreciably.  

Quaternions (non-commutative): In general for any 
quaternionic variable q we have for solution in quaternions 
the direct sum in which each component is single valued:

ln /ln ln /ln( ) (ln / ln ) (ln / ln )( )
that satisfies ( ) ( ),  with  periodic of period one. Thus

ln /lnln /ln ln /ln( ) ( ) (ln / ln ) [(ln ln ) / ln ]
ln /ln (ln / ln ) ( ) and a

= ⊕
=

= = + =

=

b a b aw q q P q a P q a q
w aq bw q P

b ab a b aw aq aq P aq a a q P a q a
b abq P q a bw q lso with non-commutativity, 

ln /lnln /ln ln /ln( ) (ln / ln )( ) [(ln ln ) / ln ]
ln /ln(ln / ln ) ( ). 

= = +

= =

b ab a b aw aq P aq a aq P a q a a q
b aP q a bq bw q

*,  with conjugate, 
* 2 2 2 2 1/2( )

(cos sin )!0
1ln ln cos

It follows that if   is the angle defined by cos  and  is the unit vector 

def

θ θ

= + + + = + = − − − = −

= = + + +
∞

= = +∑
=

−= +

=

q a ib jc kd a v q a ib jc kd a v
q q q a b c d

nq vq ae e v vn vn
v aq q v q

a q u

ined by  then sin  and ,   arbitrary real.θ θθ= = = = xu x uxq q e v u v u q q q e x
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Figure 1 shows how multiplication of two quaternionic 
numbers is performed. To see how, as with quaternions, 
the idea of non-commutativity occurs in practice it can be 
illustrated by rotating a book 90° around a vertical axis then 
90° around a horizontal axis which produces a different 
orientation than when the rotations are performed in the 
opposite order and thus the process is non-commutative. 
Quaternions are four dimensional, one of the dimensions, the 
real part describes stretch or contraction of objects and the 
other three, similar to complex numbers describe the angles: 
up or down from the horizontal level, right or left yaw and 
roll around a horizontal line through the center [5].

Octonions (non-commutative and non-associative): As 
a vector space, the octonions are given by

7

0 0 7
1

O={ ;    ,..., R}i i
i

a a e a a
=

+ ∈∑
In mathematics associativity is an abundantly used 

property and most algebraic structures  require their binary 
operations to be associative. On the other hand, in chemistry 
for example combining chemicals from compounds is a 
very non-associative operation. Non- associativity is well 
illustrated by subtracting real numbers: (7-4)-2 is different 
than 7-(4-2). Octonions not only do not commute but also 
they are non-associative. Rotation is associative but they are 
not commutative. The multiplication of octonions is used to 
describe rotations in 7 dimensions and stretch and contraction 
as an additional 8th dimension. String theory needs two more 
dimensions one for the linear string and one for time and 
membrane M-theory needs one more dimension than strings, 
that is, 11 dimensions. We have: 

0

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

2 2 2 2 2 2 2 2 1/2
0 1 2 3 4 5 6 7

0

=
+  with conjugate

*
* ( )

(cos sin )

1ln ln cos

It follow

!
x

n

n

r x e x e x e x e x e x e x e x e
x v

r x e x e x e x e x e x e x e x e
r r r x x x x x x x x

vre e v vv
v ar r v r

r
n

∞

=

= + + + + + + +

= − − − − − − −

= = + + + + + + +

= = +

−= +

∑

s that if   is the angle defined by 
cos  and  is the unit vector defined by

,then sin  and 

,  arbitrary real.

a r u
ur r e v u v u r
xx uxr r e x

θ
θ

θ θ
θ

=

= = =

=

See also Figure 2 for the Fano Plane that yields the same 
values by moving from one node to the next with the product 
given by the third node in that direction.

Not having three parts to examine associativity, our 
solution in the octonion domain (Figure 3) [6] as with 
quaternions with a and b real and positive and with P periodic 
of period one is given by:

ln /ln ln /ln( ) (ln / ln ) (ln / ln )= ⊕b a b aw r r P r a P r a r

First Consequence and Evidence for Validation 
The laws of nature are written in the workings of our 
brains

The solution of Fredholm’s equation in the real domain 
is defined in the frequency domain or transform domain in 
Fourier analysis as it is based on the flow of electric charge. 
We must now take its transform to derive the solution in the 
space-time domain. Thus our solution of Fredholm’s equation 
in the real domain is given as the Fourier transform, 

( ) ( ) ( )π ω βωω ω
∞

∞
∫

+
-2 i x

-

f   =    F x  dx  =    Pe Ce

Its inverse transform is the inverse Fourier transform of a 
convolution of the two factors in the product. We have:

   ( ) ( ) π ωω ω
∞

∞
∫

+
2 i x

-

F x   =    f      de
Since our solution is a product of two factors, the inverse 

transform can be obtained as the convolution of two functions, 
the inverse Fourier transform of each of which corresponds to 
just one of the factors.

Now the inverse Fourier transform of e-βu is given by: 

Figure 1. Quaternion multiplication.

 
Figure 2. Fano plane.

 1 
1e  2e  3e  4e  5e  6e  7e  

1 1 
1e  2e  3e  4e  5e  6e  7e  

1e  1e  -1 
4e  7e  - 2e  6e  - 5e  - 3e  

2e  2e  - 4e  -1 
5e  1e  - 3e  7e  - 6e  

3e  3e  - 7e  - 5e  -1 
6e  2e  - 4e  1e  

4e  4e  2e  - 1e  - 6e  -1 
7e  3e  - 5e  

5e  5e  - 6e  3e  - 2e  - 7e  -1 
1e  4e  

6e  6e  5e  - 7e  4e  - 3e  - 1e  -1 
2e  

7e  7e  3e  6e  - 1e  5e  - 4e  - 2e  -1 

Figure 3. Octonion multiplication.
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( )π β
β ξ2 2

2 /
+

Also because a periodic function has a Fourier series 
expansion we have,

 ( ) πα
∞

∞
∑ 2 iku

k
k = - 

P u   =  e ,

with the following inverse Fourier transform: 

( )k -2 k
k = - 

α δ ξ π
∞
∑
∞

Now the product of the transforms of the two functions 
is equal to the Fourier transform of the convolution of the 
two functions themselves which we just obtained by taking 
their individual inverse transforms. We have, to within a 
multiplicative constant:

 2
( )

( )
+

k

k = - - 2
 

x -
- 2 k   d

+
 β

β
α

ξ
δ ξ π ξ

∞ ∞

∞∞

∑∫
)(

k
2 2k = - +

=  
x-2k

β
α

β π

∞

∞

∑

We have already mentioned that this solution is general and 
is applicable to phenomena requiring relative measurement 
through ratio scales. Consider the case where

P (u)=cos 2πu=(1/2) (ei2πu+ei2πu)

Knight [7] adopts the same kind of expression for finding 
the frequency response to a small fluctuation and more 
generally using ei2πu instead. The inverse Fourier transform of 
w (u)=Ce-βu cos 2πu, β>0 is given by: 

( ) ( )22 22

1 1C    +  
2  + 2 +  + 2  - 
β
π π ξ β π ξβ

 
 
  

When the constants in the denominator are small relative 
to ξ which may be distance or whatever factor that influences 
a stimulus as it impacts a responder, we have 2/C ξ  which 
describes how the inverse square laws of optics, gravitation 
(Newton) and electric (Coulomb) forces act. This is the same 
law of nature in which an object responding to a force field 
must decide to follow that law by comparing infinitesimal 
successive states through which it passes. If the stimulus 
is constant, the exponential factor in the general response 
solution is constant, and the solution in this particular case 
would be periodic of period one. When the distance ξ is very 
small, the result varies inversely with the parameter β>0.

The simple and seemingly elegant formulations in 
science have been questioned by scientists. LeShan and 
Margenau report on page 75 in their book Einstein’s Space 
to Van Gogh’s Sky Macmillan Publishing Co. Inc., New York 
1982 that “Long after Newton proposed his inverse square 
law of gravitation, an irregularity in the motion of the planet 
Mercury was discovered. Because of a certain precession–
i.e., its entire orbit seemed to revolve about one of its foci 
it did not exactly satisfy Newton's law. A mathematician 
proposed, and showed, that if the exponent 2 in Newton's law 
were changed ever so slightly–to something like 2.003, the 
precession could be accounted for. But this suggestion fell 
upon deaf ears: No astronomer took seriously the possibility 
that a basic law of nature should lack the simplicity, the 
elegance, the integer 2 conveyed”.

More importantly and very intriguing is the possibility 
that β may be very large and its effect balances off the effect 
of ξ. Since a stimulus often passes through a medium and 
arrives somewhat weaker at its response destination, the 
effect of the medium may be great and affects the response 
substantially. It seems that dark matter in space acts like such 
a gravitational influence medium, and moderates behavior. 
For example it is well-known that the outer stars of a galaxy 
would be driven much farther due to centrifugal force and 
far distance, but the effect of dark matter serves to pull these 
stars inwards, diminishing the overall effect of the forces 
countering gravitation. 

Most of us think that the physical world is completely 
stupid and unresponsive in the way the human mind is. But 
apparently that is not true. Refer back to Julian Huxley’s 
observation about the real world. According to Huxley, all 
nature has a degree of awareness and solves problems. We 
might add that inanimate things do it in response to natural 
law represented by the Fourier transform. But for mental 
phenomena things are more complicated.

Second consequence – the weber-fechner law of 
psychophysics

To keep the story of the continuous case together, we 
decided to repeat in about a page what we have already 
shown before to justify the adoption of the Fundamental Scale 
of the AHP. It has to do with the fact that the well-known 
Weber-Fechner logarithmic law of response to stimuli can be 
obtained as a first order approximation to our eigen function 
solution through series expansions of the exponential and 
of a periodic function of period one (for example the cosine 
function cos u/2π) for which we must have P (0)=1 as:

321 log)()( CsCuPeCuv u +≈= −β ,

where P (u) is periodic of period 1, log , 0.abβ β= >  
and where log , 0.abβ β= >  

The expression on the right is the well-known Weber-
Fechner law of logarithmic response log , a 0M a s b= + ≠  
to a stimulus of magnitude s. 

Third consequence and evidence for validation 

The brain works with impulsive firings: The solution of 
Fredholm’s equation in the complex domain has the following 
Fourier Transform which leads to a linear combination of 
impulses. It describes which frequencies are present in the 
original function that is transformed. It decomposes a function 
into oscillatory functions. For our solution, we begin with

,

log(log /log )( ) ( ) | | ( ) ,
log

log , | | log
log

zz a uw z dz b P dz J b P u du
a

z u uu z a J a a
a

= =

= = =

2'( ) ( ) log

[2 ( )] (log log| |)'log

π

π θ

∑= =

+ +
∑

u nui
w z dz ab a a e dun

n

n b iu a b u
a a e e dun

n
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and the Fourier transform is given by	

'

'

[2 ( )] (log log| |)( ) log (1 / (2 )

(2 ( ) )
(1 / 2 ) log (2 ( ) )

log | | (2 ( ) )

π θ
π

π θ
π δ π θ

π θ

∞∞

=−∞ −∞

∞

=−∞

+ + −
=

+ −
= + −

+ + −

∑ ∫

∑

n
n

n
n

n b ui a b u ixuF x a a i e du

n b x
a a i n b x

a b n b x

e e

where δ (2πn+θ(b)-x) is the Dirac delta function. 
Actually our Fourier series is finite as the number of 

synapses and spines on a dendrite are finite. Our Fourier 
transform is written as:

( ) (1 / 2 )

(2 ( ) )'log (2 ( ) )
log | | (2 ( ) )

F x

N n b x
a a i n b xnn N a b n b x

π

π θ
δ π θ

π θ

= ×

+ −
+ −∑

=− + + −

with a Dirac type of function δ  involved.

When we watch birds eating from the ground, rabbits, 
deer and other wild animals we find that they are very jumpy 
and fearful and constantly look around ready to run away. 
Biologically we probably have similar traits that help us 
look out for dangers that might happen in a sequence and 
very quickly. Thus our attention must shift rapidly from 
one kind of danger to another. As a result, when we are not 
intentionally concentrating, our minds do not dwell long 
on any one thing and are jumpy. Our neurons usually are 
rapidly firing in expectation of sudden changes. Thus, for our 
improved chances of survival, we might expect the solution 
to our mathematical description of the brain to be impulsive, 
a Dirac type of distribution that adapts quickly, rather than 
having long segments of continuity. This is a rationalization 
of what we might expect in the workings of the brain.

Remark
The reciprocal property plays an important role in 

combining the judgments of several individuals to obtain a 
judgment for a group. Judgments must be combined so that 
the reciprocal of the synthesized judgments must be equal 
to the syntheses of the reciprocals of these judgments. It has 
been proved that the geometric mean is the unique way to 
do that. If the individuals are experts, they may not wish to 
combine their judgments but only their final outcome from a 
hierarchy. In that case one takes the geometric mean of the 
final outcomes. If the individuals have different priorities of 
importance their judgments (final outcomes) are raised to 
the power of their priorities and then the geometric mean is 
formed.
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