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Long-acting insulin management for blood glucose prediction models.
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Abstract

Currently available state-of-the-art mathematical models for blood glucose level prediction have been
developed for intensive care departments, and thus they do not support long-acting or ‘basal’ insulins
applied typically once a day. Our goal was to adjust the current models to support basal insulin, and
thus provide a short term blood glucose prediction service applicable in outpatient care, in the form of a
smartphone application. We propose a method that simulates the absorption of basal insulin as a series
of smaller insulin doses according to four alternative ‘dosing profiles’, instead of using a single big dose
of bolus insulin. The corrected model was tested on 18 data sets originating from a clinical trial in which
16 insulin dependent patients (7 female and 9 male) used a continuous glucose monitor device to record
their blood glucose levels for six days, while their meals were recorded. The prediction errors of the
corrected model were compared to the errors of the original model with the usual statistical methods
and the error grid analysis. We also evaluated the night periods separately from the day-time. The
proposed model correction was found to reduce the error of the prediction with respect to all
investigated evaluation criteria by 0.59-1.02 mmol/l, moving the average absolute error close to the error
range on the measurement devices. This reduction could bring online, continuous blood glucose
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prediction services closer to mass deployment in lifestyle support applications for diabetics.
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Introduction

Advances in mobile technology make it now possible to keep
reliable lifestyle logs including nutrition. Such logs can be a
basis for smart services like blood glucose level (BGL)
prediction for millions of diabetic patients in their daily life. It
has been shown that patients can benefit from mobile ambient
assisted living [1] services for diabetes management [2]. One
of the key factors that such prediction methods must consider,
beside the meal consumption and the blood glucose history, is
the subcutaneous insulin absorption. Patients with type 1
diabetes mellitus use insulin to control their BGL, and many
patients with type 2 diabetes mellitus (T2DM) also need
insulin treatment, in addition to using antidiabetic drugs and
changing their lifestyle, in order to keep their BGL under
control. According to current practice, insulin dependent
diabetic patients use basal (long-acting) insulin injections once
a day, to maintain a basic, continuous insulin level for the
whole day (which is important especially during the night and
the wake-up period), and bolus injections for every meal, to
keep blood glucose levels under control following a meal.
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The mathematical models commonly used for BGL prediction
support the specification of short acting insulin dosing via a
maximum value and the time-to-maximum value.

Though the real action of insulin is far more complex, this
method is satisfactory for modeling bolus insulin correctly, but
not basal insulin, making the models applicable only for
inpatient care scenarios. The effect of the basal insulin is
usually simulated as a single injection of bolus insulin, with a
slowly rising absorption curve and a very high maximum
absorption value. However, in reality, the pharmaco-dynamic
profile of bolus insulin level differs fundamentally from that of
long lasting insulins, the latter reaching a proper insulin level
in a very short time and maintaining that level for a long time.
An adjustment to the traditional model is required to properly
handle basal insulin in order to reach more accurate results.
Based on our previous results in this field [3], the core idea of
our work is that by substituting the single big dose of insulin
with a series of several smaller bolus insulin doses we can
better simulate the steady curve of insulin presence in the
blood similar to the curve defined by the medicine
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manufacturers, and thus we can decrease the error of the
prediction.

Related Work

Although currently available basal insulins fail to fully imitate
the physiological basal insulin secretion, their characteristic
shows a gentle rise and fall compared to intermediate-acting
insulins [4,5]. In order to duplicate the endogenous insulin
secretion affording more flexible treatment with fewer
hypoglycemia episodes. In a related study, long-acting basal
insulin demonstrated great improvements in glycemic control
and reduced nocturnal hypoglycemia, as well as reduced
weight and lowered mealtime insulin doses [6]. Bolli et al. [7]
and Chapman et al. [8] have shown in their works that glargine
(GL) and detemir insulins prolong subcutaneous absorption by
altering amino acid structure (GL) or adding fatty acylated side
chains (Detemir). However, in [9] it was shown that there are
differences in the pharmacokinetic and pharmacodynamic
properties of detemir and glargine insulins.

As the problem of how insulin absorption can be modeled in
BGL prediction is a complex task, many different approaches
are used. In [10-13] the authors focus on short term prediction,
where only the 15-30 min after a meal is considered. In such
cases, however, the effect of bolus insulin is so much greater
than that of basal insulin, that the latter is usually excluded
from the prediction process. However, in real life, not only
these short time intervals are crucial for diabetics: how their
BGL fluctuates throughout the rest of the day is just as
important.

Some prediction methods concern patients that require no
direct insulin intake in their medications [14]. Others use only
BGL history as input and exclude the effect of factors like
insulin injection or meal intake [12,15,16]. Such an approach,
however, assumes accurate insulin doses and nutrition in a
strict daily regime, and patients whose metabolism reacts
almost identically to that of “healthy” ones [17].

In our previous work [18], we implemented an outpatient blood
glucose prediction model by combining two state-of-the-art
models. The first one models the glucose absorption in two
compartments (stomach and intestines) [19]. This model
supports as input various sorts of food with different glycemic
indices and it can also handle the overlap in the nutrients’
absorption between two consecutive meals. The other model is
based on nonlinear discrete-delay differential equations [20],
and it models the blood glucose and insulin control system.
The four equations of the model describe insulin transfer
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between two subcutaneous insulin depot, insulin absorption
into blood and the role of insulin in blood glucose level
control.

For more details on the model equations, parameters and our
initial results in personalizing the parameters via genetic
algorithms [3].

Materials and Methods

In the new method proposed in this paper, we model the long-
acting insulin in a more accurate way by using a series of
smaller insulin doses, instead of one big dose, dividing the
original time interval into short subintervals with low maximal
absorption time.

To demonstrate the idea, the top left curve in Figure 1
represents basal insulin absorption according to information
from medicine manufacturers. The top right curve shows how
the model simulates a 50 unit basal insulin with 400 min
maximal absorption time (T, before the proposed
correction. The curve at the bottom shows the correction
method i.e. smaller doses with appropriate overlap can
simulate the required flat curve.
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Figure 1. The core idea of the proposed method: by a series of small
bolus insulin doses we simulate the flat curve of basal insulin for a
glycemic model that does not support basal insulin input directly.

In order to find a suitable number of sub-doses, we designed
four ad-hoc ‘dosing profiles’, ranging from very few (6-7) to
several (130-150) doses, and we run the tests for each of them.
According to the product sheets, there are differences in
duration of action, rising and falling characteristics among
long-acting and intermediate-acting insulin products [21].
Table 1 shows how we modeled, in the four profiles separately,
the five basal insulin products that appeared in the patient logs.

Table 1. The parameter set of the four tested Insulin profiles for the five relevant basal insulin products.

Insulin types Lantus Levemir Humulin N Insulatard Insuman basal
Original Tpyax 750 420 390 300 300
1 Doses 7 6 6 6 6
Dose amount 14.3% 16.7% 16.7% 16.7% 16.7%
43 Biomed Res 2019 Volume 30 Issue 1



Long-acting insulin management for blood glucose prediction models

Tmax 100 70 65 50 50

2 Doses 20 20 20 20 20
Dose amount 5.0% 5.0% 5.0% 5.0% 5.0%
Tmax 375 21 19.5 15 15

3 Doses 40 40 40 40 40
Dose amount 2.5% 2.5% 2.5% 2.5% 2.5%
Tmax 18.75 10.5 9.75 7.5 7.5

4 Doses 150 130 150 150 150
Dose amount 0.7% 0.8% 0.7% 0.7% 0.7%
Tmax 0.67 0.54 0.43 0.33 0.33

Data sets

The proposed method was validated in a small scale clinical
study in cooperation with the Cardiac Rehabilitation Institute
of the Military Hospital, Balatonfiired, Hungary, involving
insulin dependent type 2 diabetes patients on 3 w rehabilitation
courses. The patients logged every meal, applied dose of
insulin and every value of self-measured (fingertip) blood
glucose using a fast and robust smart phone lifestyle support
application [22], and they were wearing a continuous glucose
monitor (CGM) device (Guardian Pro, Medtronic, Northridge,
CA), which recorded a glucose level reading every five
minutes [23]. The tests run between 14 January 2015 and 5
April 2015.

Clinical study

The study protocol was approved 18 October 2013 by the
institutional ethical committee of the Military Hospital,
Budapest, Hungary, chaired by Dr. Laszlo Kovacs, under the
submission number 11/20-265-2013. The protocol was designed
and implemented in compliance with the World Medical
Association Declaration of Helsinki on Ethical Principles for
Medical Research Involving Human Subjects. The input data
consisted of 18 datasets from 16 T2DM patients (7 female and
9 male), each dataset containing at least 3 d CGM records (ca.
25000 CGM records in total). Patient 4 and patient 12 had two
data sets. The average age of the patients is 70 £ 8§ y (mean +
standard deviation) with average weight 90 + 18 kg. The data
set contained 340 meal logs and 280 insulin injection records.
In addition to the CGM values, we also had access to fingertip
BGL records, measured with an ordinary fingertip blood
glucose meter. The study was performed as part of a 21 d
rehabilitation treatment with no stress in the patients’ everyday
life and the patients were asked to refrain from excessive
physical activity during the trial.

Evaluation

We used standard statistical methods to evaluate the
improvement achieved by applying the proposed correction.
We also used the Clarke Error Grid Analysis (EGA) approach
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to assess the clinical significance of differences between the
predicted values and the blood glucose reference
measurements [18,24]. This evaluation uses a Cartesian
diagram, in which the predicted values are displayed on the Y-
axis, whereas the actually measured values are displayed on the
X-axis. Region A contains those values that fall within 20% of
the measured value, so it can be considered the ‘clinically
accurate’ prediction area. Regions A+B are those with
acceptable point accuracy. For a graphical representation of the
EGA regions (Figure 2).

The EGA class of a prediction is a figure of merit for the
practical application of a prediction tool, in contrast, the
average improvement in the absolute error measures the
theoretical performance of the model.

Results

We tested the corrected model against the original setup (i.e. a
large dose of single bolus insulin for a basal insulin
administration) in four configurations:

* 180 min predictions, on the whole time period and night-
time taken separately, for each data set

* Prediction accuracy at the next meal-time

*  Wake-up BGL prediction

* EGA evaluation

Results for the 180 min predictions

We applied the original model and the corrected model to
predict short term (180 min) blood glucose levels with various
basal insulin profiles and computed the average absolute error
of the prediction using the CGM records of the clinical study
running the prediction model on all the 18 datasets.

In order to find the best profile, we first ran this test without
separating the day-time from the night-time. As Table 2 shows,
profile 1 with relatively few doses proved the best with respect
to the improvement in the average absolute error. The original
model produced 4.41 mmol/l average absolute error, while the
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corrected model produced 3.79 mmol/l average absolute error,
thus the achieved improvement is 0.62 mmol/l.

Table 2. Average improvement, biggest improvement and worse results
data for each insulin profile.

Profile 1 Profile 2 Profile 3 Profile 4

Average improvement (mmol/l) 0.62 0.46 0.47 0.58
Biggest improvement (mmol/l) 2.37 2.35 2.32 2.35
No. of data sets with worse 3 4 5 3
results

We also performed a paired t-test of the errors before
correction and after correction. As Table 3 shows, the new
method produced significantly better predictions except in two
cases, where it still gave better prediction, but the differences
were not significant.

Table 3. Paired t-test result for prediction errors of original method
and new method.

Dataset No. of measurements p
P01 1524 <0.01
P02 1456 0.093
P03 1562 <0.01
P04.1 1724 <0.01
P04.2 1491 <0.01
P06 947 <0.01
P07 1477 <0.01
P09 1440 <0.01
P10 1534 <0.01
P11 1674 <0.01
P12.1 590 <0.01
P12.1 1589 <0.01
P14 1445 <0.05
P15 433 <0.01
P16 1444 0.1
P17 1695 <0.01
P18 1473 <0.01
P19 1487 <0.01

Since the night periods bear a specific significance with respect
to basal insulins, we divided the 24 h of the day into two parts,
the night-time from 22’00 to 5’59 the next and the day-time
from 6’00 to 21°59. During the night, patients are fasting,
while during day-time bolus insulin injections and meals are
also present. Using profile 1, we repeated the test. For the night
the average absolute error reduced from 5.01 mmol/l to 4.33
mmol/l (improvement is 0.69 mmol/l), and in day-time the
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average absolute error decreased from 4.13 mmol/l to 3.54
mmol/l (improvement is 0.59 mmol/l).

Prediction accuracy at the next meal-time

We also analysed the prediction accuracy at the next meal-
time. A frequently used measure in the literature is the ‘ratio of
acceptable error’, i.e. the ratio of predictions with an absolute
error less than 3 mmol/l. We found that for 5 datasets more
than 50% of the errors were within 3 mmol/l, for 11 datasets
this ratio was between 30% and 50%. In two cases, it failed to
achieve an acceptable result. As an example, Figure 2 shows
the results of a two-day-long test for a patient with the errors at
meal times.

mmol/|
S
\
4
\
4

————
2/15/2015 2/15/2015 2/15/2015 2/16/2015 2/16/2015 2/16/2015 2/16/2015 2/17/2015
11:52 17:52 19:52 737 11:52 17:52 21:02 6:52

—e— Real measured values = e = Estimated values

Figure 2. Prediction of blood glucose level at the next meal time for a
patient. Each dot represents a meal-time.

Wake-up BGL prediction

Since there are no bolus insulin doses during the night time, we
can expect a remarkable improvement in the prediction
accuracy in the wake-up (fasting) BGL before the first meal
and the first insulin injection. It is also an important question
from the clinical point of view whether we can reliably predict
the fasting BGL because it can affect the insulin administration
regime. For this reason, we performed a paired t-test on the 83
morning samples of the 19 patients. The test showed that there
are significant improvements in the prediction error between
the original model’s prediction and the new model’s prediction
(p<0.01). The difference of the average absolute error between
the original and the corrected model is 1.02 mmol/I.

EGA evaluation

The EGA evaluation for all patient datasets showed that the
percentage of prediction falling in the A or B (clinically
acceptable) regions increased from 75% to 81% by applying
the corrected model, which means a 6% improvement.

Discussion

It is hard to relate our work to previous results because to our
best knowledge no research has so far been published in the
exact field of modeling long-acting insulin modeling in blood
glucose prediction based on mathematical models.

The tests were designed to investigate all important aspects of
the BGL prediction, with an emphasis on the applicability for
clinical decision support. The results were quite in line with
our expectations, showing an improvement in all investigated
areas:
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* The short-time 180 min predictions produced more
improvement during the night, which can be explained by
the fact that due to the missing meals and bolus insulin
administration, an improved prediction of the action of the
basal insulin has more effect on the overall prediction error.

* The wake-up BGL has a specific clinical importance. The
application of the model correction resulted in a relatively
small, but statistically significant improvement (1.02
mmol/l) in the average absolute error.

e In terms of the EGA assessment, 6% more of the
predictions fall into the A or B regions. This shows that by
the application of the correction, the errors were effectively
translated into the “clinically safer” domains (Figure 2).

A known limitation of our approach is due to the fact that the
insulin producers do not publish the exact action profile of the
insulin products, the only suggestion being that the insulin has
a ‘fast’ time to maximum and a nearly constant, flat top for the
specified duration, usually 24 h. Thus our method that
implements a perfectly flat-top plateau is just an approximation
of the real action. The fact that we got the worst prediction
results specifically in the case of Lantus and Levemir insulins
may be due to a significant deviation of these insulins’ actual
profile from the ‘ideal’ flat-top profile that we tried to
approximate.

Nevertheless, our approximation can be assumed still better
and closer to reality than the single-dose approach. Since the
prediction errors decreased considerably and statistically
significantly, we can regard the above assumption clinically
proven.

A definite limitation of the proposed method stems from the
mathematical model being capable to tackle only nutrition and
insulin administration, but not the two influential factors of
emotional, social or cognitive stress, and physical activity-
though these factors are well known to have a profound and
long-lasting effect on the BGL of diabetics [25]. Though our
clinical setting excluded the presence of stress and physical
activity from the current clinical study, in a practical
application outside the rehabilitation clinic such factors must
be accounted for.

Summary

In summary, the paper presented our results in the modeling of
basal insulin regimes for outpatient diabetes lifestyle support.
Our improvement over the traditional modeling method,
combined with the expected improvement from the planned
management of other factors like stress, insulin sensitivity and
physical activity, could make a personalized prediction model
more efficient and reliable as a module of a lifestyle support
mobile application for outpatient healthcare.
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