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Abstract

The soft computing techniques solve the major localization problems in optimization of biomedical
images. We have developed an automatic method aimed first at segmentation of MRI brain images by
denoising with Discrete Curvelet Transform. Then clustering of denoised images using Fuzzy C-means
clustering localized the abnormality by simulating the anatomical structure. The statistical analysis
confirmed the validity of the algorithm. The abnormality in localization compared with microarray gene
expression evaluation also showed variations which will be helpful for the development of gene module
based neuroimaging advancements.
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Introduction
Magnetic Resonance Imaging (MRI) is routinely used in the
diagnosis, characterization and clinical management of
neurodegenerative disorders of brain [1,2]. It is a dynamic non-
invasive diagnostic imaging tool that allows global assessment
of brain images and their interaction with their local
environment [3]. Noise is an ingrained phenomenon in the
medical images which may increase the root mean square error
and reduce the peak signal to noise ratio [4-7].

Curvelet based approach is used for the denoising of Magnetic
Resonance (MR) and Computer Tomography (CT) images [6].
Image fusion of MRI and CT images is also possible by this
analysis for better interpretation [7]. Curvelet transform is a
new multiscale representation suited for objects which are
smooth away from discontinuities across curves, which was
developed by Candies and Donoho [8] and this digital
transforms is applied for the denoising of some standard MR
and CT images embedded in random noise [9,10]. The
Curvelet reconstructions exhibit higher perceptual quality than
wavelet based reconstructions, offering visually sharper images
and, in particular, higher quality recovery of edges and of faint
linear and curvilinear features. Curvelets will be superior over
wavelets in the following cases [11]

• Optimal sparse representation in object with edges
• Optimal image reconstruction of severely ill-posed

problems
• Optimal sparse representation in wave propagators

Since the brain images have several objects and curved shapes,
it is expected that Curvelet transform would be better in their
denoising [12].

Figure 1. Flow chart of discrete curvelet transform with spatial fuzzy
clustering.
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The proposed filtering technique is used along with the
Curvelet transform and Wavelet transform and it is observed
that the Curvelet transform produces better result when
compared with the Wavelet transform [13]. The simulation
results have proved that this method actively removes the noise
and reduces the root mean square error while increasing the
image enhancement factor and peak signal to noise ratio
[14,15]. Major denoising methods include Gaussian filtering
[16], Wiener filtering, and wavelet thresholding [17]. Many
more methods make assumptions about the image that can lead
to blurring.

Table.1. The description of MRI image references used in this study.

case Age Clinical history Neuromicropathology

1009 57 years atherosclerosis Normal

1015 49 years hypothyroidism Haemosiderosis

2001 24 years asthma Normal

A new method called the non-local means algorithm is
presented that does not make the assumptions that lead to

blurring [18]. Non local means filter uses all the possible self-
predictions and self-similarities that the image can provide to
determine the pixel weights for filtering the noisy image, with
the assumption that the image contains an extensive amount of
self-similarity [19,20]. Fuzzy clustering has a major role in
solving problems in the areas of pattern recognition and fuzzy
model identification. A variety of fuzzy clustering methods
have been proposed and most of them are based upon distance
criteria as described by Krinidis et al. [21].

It uses reciprocal distance to compute fuzzy weights. A more
efficient algorithm is the new FCM. It computes the cluster
centre using Gaussian weights as described by Yang et al. [22]
and Despotovic et al. [23]. The FCM technique reduces the
noise effect, because no similar cluster is present in the
neighbourhood, the weight of the noisy cluster is greatly
reduced with FCM which is not the case in K means as
described [24]. Furthermore, the membership of the correct
cluster is enhanced by the cluster distribution in the
neighbouring pixels [25].

Table 2. Evaluation of performance parameters of coronal axes brain images.

Coronal Plane %RD %Sen %Spe %Acc RMSE PSNR CC SSI

-97 2.9086 39.9335 99.9967 94.7571 5.6457 40.6136 0.9753 0.0576

-93 2.4408 74.4621 98.2430 96.1685 5.6556 40.6137 0.9762 0.0821

-86 1.9891 45.2125 99.9851 90.0955 5.6457 40.6136 0.9740 0.1185

-75 1.6420 28.7983 100 80.0430 5.6457 40.6136 0.9755 0.1659

-66 1.4926 41.1329 99.9651 79.7424 5.6457 40.6136 0.9736 0.2025

-55 1.3950 30.1337 99.9520 72.3053 5.6457 40.6136 0.9720 0.2475

-44 1.3759 37.7875 100 73.6649 5.6457 40.6136 0.9713 0.2660

-34 1.4155 43.8620 100 77.3849 5.6457 40.6136 0.9719 0.2620

-25 1.4572 63.8922 99.2335 85.4919 5.6457 40.6136 0.9750 0.2642

-19 1.4637 60.8328 99.4975 84.5505 5.6456 40.6137 0.9751 0.2621

-13 1.4784 59.8750 99.9065 85.3485 5.6457 40.6136 0.9744 0.2523

0 1.5272 58.8570 99.3294 85.5621 5.6457 40.6136 0.9747 0.2328

8 1.5824 42.1302 100 82.8720 5.6457 40.6136 0.9735 0.2132

18 1.6602 43.5137 100 84.9976 5.6457 40.6136 0.9740 0.1892

24 1.7647 42.0204 100 86.3907 5.6457 40.6136 0.9735 0.1639

35 1.9043 50.1957 99.8660 89.7964 5.6457 40.6136 0.9740 0.1381

43 1.9043 59.4738 99.8481 91.5115 5.6457 40.6136 0.9740 0.1377

50 2.1747 49.7313 99.9668 93.5486 5.6457 40.6136 0.9681 0.0988

58 2.4257 34.3820 99.9842 91.5527 5.6456 40.6137 0.9699 0.0776

64 2.8098 26.1394 100 95.3262 5.6457 40.6136 0.9688 0.0594
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The level of cellular and molecular complexity of the nervous
system creates unique problems for the neuroscientist in the
design and implementation of functional genomics studies
[26]. Reasons for major drawbacks of microarray data is its
voluminous analysis [27,28]. Recently, several studies have

attempted to correlate imaging findings with molecular
markers, but no consistent associations have emerged and
many of the imaging features that characterize
neurodegeneration currently lack biological or molecular
correlates [29].

Table 3. Evaluation of performance parameters of axial axes brain images.

Axial

Plane

%RD %Sen %Spe %Acc RMSE PSNR CC SSI

-45 2.3143 43.0611 100 93.0008 5.6457 40.6137 0.9719 0.0999

-35 1.8256 42.3746 99.6355 87.6846 5.6457 40.6136 0.9731 0.1599

-29 1.6333 25.9270 99.8060 80.5618 5.6457 40.6136 0.9720 0.1897

-23 1.5119 18.9072 100 74.4110 5.6458 40.6136 0.9728 0.2062

-17 1.4217 20.9665 99.9121 71.6446 5.6457 40.6136 0.9693 0.2223

-11 1.3892 24.7301 99.7721 69.4397 5.6457 40.6136 0.9702 0.2379

-4 1.3706 49.3072 100 79.8462 5.6457 40.6136 0.9653 0.2686

0 1.3676 49.3802 99.9687 78.9841 5.6457 40.6136 0.9667 0.2753

7 1.3680 65.0304 95.7717 82.3364 5.6457 40.6136 0.9695 0.2742

9 1.3698 62.4724 96.2724 81.7871 5.6458 40.6136 0.9692 0.2745

11 1.3711 62.2585 96.4885 81.5948 5.6457 40.6136 0.9699 0.2716

21 1.4019 57.1018 99.0230 81.6528 5.6457 40.6136 0.9722 0.2664

28 1.4360 60.9955 99.8524 84.2957 5.6457 40.6136 0.9739 0.2641

31 1.4557 59.1488 99.9281 84.2545 5.6457 40.6136 0.9730 0.2526

37 1.5096 53.3040 99.7876 83.3649 5.6457 40.6136 0.9731 0.2171

45 1.6093 51.4073 99.5319 84.5047 5.6457 40.6136 0.9733 0.1630

52 1.7381 43.7377 99.9544 85.196 5.6457 40.6137 0.9740 0.1311

59 1.9320 42.9188 99.9477 87.8555 5.6456 40.6137 0.9741 0.1058

66 2.2419 46.2605 99.9596 90.8554 5.6457 40.6136 0.9744 0.0140

74 2.9112 35.3337 100 94.4260 5.6456 40.6137 0.9703 0.0472

Much of the information encoded within neuroimaging studies
therefore remains unaccounted and incompletely characterized
at the molecular level. We reasoned that the phenotypic
neurodegeneration captured by neuroimaging reflects
underlying could be uncovered by combining genome-scale
gene expression and MRI [1].

Materials and Methods

Subjects
Experiments were carried out with 50 normal and 100
abnormal subjects with neurodegenerative symptoms (Age
group of 40-70 years) due to alcoholic history. The MRI
Images were obtained from the radiology department, Stanley
medical college. Reference MRI images of individuals used in
this study received from Allen Brain Atlas
(www.allenbrainatlas.com) (Table 1). Brain specimens of case

no. 1015 showed histopathology as modest numbers of
hemosiderin laden macrophages noted in Virchow-Robin
spaces in cerebral lobes. Brain specimens of case no.s 1009
(age: 57 years) and 2001 (age: 24 years) had normal
microneuropathology and were taken as controls for this study.

Experimental methods
Image independent noise can often be described by an additive
noise model, where the recorded image f (i, j) is the sum of the
true image s (i, j) and the noise n (i, j) and is denoted by [7],

f (i,j) = s (i,j) +n (i,j) → (1)

The noise n (i, j) is often zero mean and described by its
variance. The impact of the noise on the image is often
described by the Signal to Noise Ratio (SNR), which is as
expressed as [7]

Localization of neurodegenerative brain MRI image for gene expression evaluation
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��� = ���� = ���� 2− 1 (2)
Where σs and σf are the variances of the true image and the
recorded image, respectively. Curvelets are designed to handle
curves using only a small number of coefficients. Hence the
Curvelet handles curve discontinuities well. The procedure to
denoise an image using Curvelet transform can be expressed as
[7]

Figure 2. Flow chart of spatial fuzzy clustering.

Figure 3. RMSE and PSNR comparison values between DWT and
DCT.

Restored Image g (i, j) = DCT-1[DCT(f(i,j))]→(3)

The MRI brain images samples are denoised and restored by
curvelet decomposing and compositions as restored image as
shown in Figure 1. For performing curvelet transform, the
curvelet transformation is applied to the noisy image instead of
the wavelet transform [7].

Dct (n) = C.T [f (i,j)] = {D1 (n) + D11 (n) + D12 (n) + D13 (n) +
D14 (n) + D15 (n) + D16 (n) + D17 (n) + D18 (n) + D2 (n)}→(4)

The filter is applied to the decomposed components.

DF1 (n) = Fnlm (D1 (n))→ (5)

DF11 (n) = Ft (D11 (n)) → (6)

DF12 (n) = Ft (D12 (n)) → (7)

DF13 (n) = Ft (D13 (n)) → (8)

DF14 (n) = Ft (D14 (n)) → (9)

DF15 (n) = Ft (D15 (n)) → (10)

DF16 (n) = Ft (D16 (n)) → (11)

DF17 (n) = Ft (D17 (n)) → (12)

DF18 (n) = Ft (D18 (n)) → (13)

DF2 (n) = Ft (D2 (n)) → (14)

After applying the inverse transformation, the Restored Image
is obtained as O (n) [7]

Figure 4. Results for abnormality of patient brain sample on temporal
lobe due to neurodegeneration localization in coronal slices of brain
images using DCT with spatial fuzzy c means clustering (patient
history : aged 42 years with severe alcoholic degeneration).

O (n) = I.C.T [DF1 (n) + DF11 (n) + DF12 (n) + DF13 (n) + DF14
(n) + DF15 (n) + DF16 (n) + DF17 (n) + DF18 (n) + D2 (n)]→(15)

The Performance Parameter, Peak Signal to Noise ratio
(PSNR) can be derived as [7]���� = 10log�(�, �)���� (16)
Where the Performance Parameter RMSE can be obtained by
[7]

���� = ∑� = 1� ∑� = 1� [�(�, �)− �(�, �)]24�� (17)
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Spatial Fuzzy C Means method incorporates spatial
information [30] and the membership weighting of each cluster
is altered based on the neighbourhood (Figure 2). The first pass
is the same as that in standard FCM to calculate the
membership function in the spectral domain. In the second
pass, the membership information of each pixel is mapped to
the spatial domain and the spatial function is computed from
that. The FCM iteration proceeds with the new membership
that is incorporated with the spatial function and it has been
described by Lui et al. [25] and Xiang et al. [31]. The idea of
FCM is using the weights that minimize the total weighted
mean square error as described by Ahmed et al. [32].

Initializing the Fuzzy Partition Matrix takes place initially. The
weights are initialized using feature vectors or randomly [33].
The process of initializing the Fuzzy Partition Matrix (FPM) is
done randomly and the size of it must be equal to the number
of clusters and length of the image as rows and columns
respectively [34].

Second the membership function M (i,j) is determined from the
initialized Fuzzy Partition matrix as [34],�(�, �) = ���∑��� (18)
Third the Centre Cij for each cluster is determined based on the
input pixel intensity and the membership function determined
using the expressed as [32],��� = �(�, �) *�(�, �)∑� = 0� ∑� = 0� �(�, �) (19)

Then, the distance is calculated by finding the difference
between the centre and the input image. The Distance is given
by [33],

Dij = |g (i,j)-Cij| → (20)

Finally updated Membership matrix is to be determined. New
membership matrix is inversely proportional to the square of
distance matrix and updated during iterations.

Microarray analysis
Genes associated with neurogeneration in iron accumulation
were identified as ATPase type 13A2 (ATP13A2),
Phospholipase A2, group V1 (PLA2G6), Pantothenate kinase 2
(PANK2), DDB1 and CUL4 associated factor 17 (DCAF17),
Fatty acid 2-hydroxylase (FA2H), Ferritin light polypeptide
(FTL) and Ceruloplasmin (ferroxidase) (CP) [29]. Their
microarray expression data were acquired from Allen brain
atlas website and compared in Tables 4-6.

Figure 5. Evaluation graph of performance parameters of coronal
plane neurdegeneration brain images.

Table 4. Microarray expression data of genes associated with neurogeneration in iron accumulation for case no. 1009.

Gene-symbol Gene-name
Temporal lobe (1009)

FuG HG ITG MTG PLP STG TP TG

ATP13A2 ATPase type 13A2 0.7348 0.4904 0.436 0.7994 0.7385 0.9103 0.394 0.7095

ATP13A2 ATPase type 13A2 0.1763 0.0362 0.2209 0.4997 0.1901 0.2735 -0.3926 -0.4575

ATP13A2 ATPase type 13A2 0.5915 0.1901 0.393 0.6296 0.5416 0.6172 -0.1019 0.6599

PLA2G6 phospholipase A2, group
VI 0.5474 0.3094 0.7145 0.8728 -0.01 0.3704 0.1645 1.45

PLA2G6 phospholipase A2, group
VI 0.6242 0.8049 0.8018 1.037 0.792 0.8634 0.3632 0.7755

PANK2 pantothenate kinase 2 0.7498 0.3183 0.8637 1.0426 0.8359 1.138 0.3497 1.1843

PANK2 pantothenate kinase 2 0.0383 -0.039 0.3525 0.4041 0.1649 0.3654 -0.2511 0.9139

DCAF17 DDB1 and CUL4
associated factor 17 -1.111 -0.685 -0.4477 -0.459 -0.7618 -0.7368 -1.671 -1.5145

DCAF17 DDB1 and CUL4
associated factor 17 -0.857 1.1656 -0.0664 0.1936 0.3913 -0.1311 -0.7693 -1.5939

FA2H fatty acid 2-hydroxylase 0.4312 0.646 0.491 0.7335 0.2482 0.3291 -0.5366 1.0275

FTL ferritin, light polypeptide 0.0957 -0.394 0.4807 0.8951 -0.1633 -0.14 0.9766 0.5527

Localization of neurodegenerative brain MRI image for gene expression evaluation
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FTL ferritin, light polypeptide -0.5385 -0.268 -0.3583 -0.463 -0.9754 -0.8111 -0.355 -1.3685

FTL ferritin, light polypeptide 0.1397 -0.139 0.4189 0.7713 0.3844 -0.0619 1.0032 0.1818

FTL ferritin, light polypeptide 0.49 0.1431 0.7961 1.2327 0.7149 0.4299 1.0536 -0.0534

FTL ferritin, light polypeptide 0.7504 0.0252 0.8003 1.2034 0.841 0.5291 1.3541 1.3565

CP ceruloplasmin
(ferroxidase) -0.3291 -0.333 -0.0529 0.2578 -0.5072 -0.5076 -0.6631 1.4698

CP ceruloplasmin
(ferroxidase) 0.0816 0.3987 0.3147 0.6051 -0.0262 0.1535 -0.3762 0.4853

PANK2 pantothenate kinase 2 -0.3028 -0.43 -0.3236 -0.26 -0.6733 -0.2603 -0.4188 -1.2405

Results
Image segmentation using discrete curvelet transform with
minimum RMSE score (Tables 2 and 3) was done for all MRI
images including reference images (case no. 1015, 2001 and
1009). As per shown in Figure 3, DCT is advantageous over
DWT based on PSNR and RMSE values. Fuzzy C-means
Clustering of images standardized with different clusters. 82%
of abnormal images showed temporal lobe localizations
(Figures 4 and 6).

Figure 6. Results for abnormality of patient brain sample on temporal
lobe due to neurodegeneration localization in axial slices of brain
images using DCT with spatial fuzzy c means clustering (patient
history : aged 42 years with severe alcoholic degeneration).

Reference case 1015 with history of neurodegeneration also
showed clustering localization as abnormal cells with temporal
lobe in both axial and coronal planes. Hence, the main
objective is to reduce Root Mean Square Error (RMSE) and

also to increase Peak Signal to Noise Ratio (PSNR) and
Correlation Coefficient (Tables 2 and 3).

Figure 7. Evaluation graph of performance parameters of axial plane
neurodegeneration brain images.

Figure 8. Pank2 gene expression of temporal lobe of reference case:
1015 for both axial and coronal MRI images.
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It leads to the accurate measurement of Cerebral Blood
Volume, Cerebral Blood Flow and Mean Transmit Time and
hence the analysis of brain becomes more accurate. The
restored image is segmented into various clusters by using
Spatial Fuzzy Clustering. The clusters are formed based on the
intensity of the pixels present in the image. The intensity of
grey matter, white matter, CSF and neurodegeneration area in
the brain will be different and based on which the segmentation
is done and grouped into various clusters. Evaluation of
performance parameters of Coronal and axial Brain Images
were tabulated in Tables 2 and 3. Percentage accuracy,
sensitivity, specificity and Residual Difference (RD) were
graphed in Figures 5 and 7. Pank2 gene expression of temporal
lobe of reference case: 1015 for both axial and coronal MRI
images was shown in Figure 8. Microarray gene expression
data of all three cases with temporal lobe for particular genes
of iron accumulation based neurodegeneration clearly showed
variation in expression (Figure 9). The up regulated genes are
PANK2, FTL, PLA2G6 and the down regulated genes are CP,
ATP13A2. Similar expression patterns are also functionally
correlated.

Figure 9. Microarray gene expression data of all three cases with
temporal lobe for particular genes of iron accumulation based
neurodegeneration.

Table 5. Microarray expression data of Genes associated with neurogeneration in iron accumulation for case no. 1015.

Gene-symbol Gene-name Temperoal lobe (1015)

FuG HG ITG MTG PLP STG TG

ATP13A2 ATPase type 13A2 0.5445 -0.357 0.0875 0.4397 0.1961 0.1982 0.2435

ATP13A2 ATPase type 13A2 0.0618 -0.872 -0.1538 -0.039 -0.2016 -0.1477 -0.2584

ATP13A2 ATPase type 13A2 0.3145 -0.626 -0.0904 0.1857 -0.0088 -0.0123 -0.095

PLA2G6 phospholipase A2, group VI 0.5189 0.3871 0.1641 0.2536 -0.0653 -0.2302 0.1514

PLA2G6 phospholipase A2, group VI 1.2103 0.9949 0.5537 0.9645 0.7989 0.6287 1.003

PANK2 pantothenate kinase 2 1.6748 -0.238 0.5908 0.9414 0.4263 0.9184 0.4067

PANK2 pantothenate kinase 2 1.5868 -0.552 0.5726 0.9894 0.5368 0.9837 0.757

DCAF17 DDB1 and CUL4 -0.6786 -0.307 -0.897 -0.839 -0.6765 -1.027 -1.1944

DCAF17 DDB1 and CUL4 -0.0529 0.6431 -0.4059 0.224 -0.0494 -0.4334 -0.4133

FA2H fatty acid 2-hydroxylase 0.3648 0.8213 0.1307 0.5309 0.3536 0.1045 0.3888

FA2H fatty acid 2-hydroxylase 0.3977 0.6857 0.1061 0.5587 0.3349 0.0303 0.2702

FTL ferritin, light polypeptide 0.6052 0.2921 0.1319 0.4078 0.5027 0.3071 0.2215

FTL ferritin, light polypeptide -0.4181 -0.675 -0.4477 -0.352 -0.5527 -0.3973 -0.4697

FTL ferritin, light polypeptide 0.2633 -0.416 -0.1057 0.1049 0.218 0.03 -0.1148

FTL ferritin, light polypeptide 0.5806 -0.301 0.1932 0.4578 0.4752 0.3117 0.191

FTL ferritin, light polypeptide 0.7636 -0.093 0.3041 0.5845 0.6223 0.4706 0.3029

CP ceruloplasmin (ferroxidase) -0.4257 -0.536 -0.5864 -0.497 -0.2763 -0.3394 -0.3451

CP ceruloplasmin (ferroxidase) 0.0435 -1.051 -0.55 -0.344 -0.3693 -0.5069 -0.6194
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545Biomed Res- India 2017 Volume 28 Issue 2



PANK2 pantothenate kinase 2 0.2862 -0.194 0.1842 0.0878 0.2759 0.0815 -0.8658

Table 6. Microarray expression data of genes associated with neurogeneration in iron accumulation for case no. 2001.

Gene-symbol Gene-name Temporal lobe (2001)

FuG HG ITG MTG PLP PLT STG TP TG

ATP13A2 ATPase type 13A2 0.4312 -0.193 0.1939 0.4136 -0.0757 -0.5313 0.1666 1.4838 -0.3189

ATP13A2 ATPase type 13A2 0.4754 0.1328 0.1887 0.2792 -0.3373 -0.1249 0.1649 0.6876 -0.1354

ATP13A2 ATPase type 13A2 0.4523 -0.007 0.2082 0.3749 -0.2643 -0.3199 0.2253 0.9642 -0.2922

PLA2G6
phospholipase A2,
group VI -0.3846 -0.423 -0.5133 -0.28 0.0998 -0.9799 -0.3964 -0.3111 -0.8777

PLA2G6
phospholipase A2,
group VI 0.3276 -0.245 0.1529 0.409 0.113 -0.077 0.1013 1.2151 0.0264

PANK2 pantothenate kinase 2 0.8085 0.1588 0.4921 0.6789 0.5108 -0.1138 0.2951 1.8381 -0.2699

PANK2 pantothenate kinase 2 0.0704 0.239 0.0691 0.1224 0.3284 0.1294 0.1837 0.8949 -0.4588

DCAF17
DDB1 and CUL4
associated factor 17 -0.8383 0.0647 -0.7526 -0.698 -1.2485 -0.4934 -0.4171 -1.4248 -0.0066

DCAF17
DDB1 and CUL4
associated factor 17 -1.134 0.1027 0.1722 -0.392 0.4119 1.0846 0.7262 -0.4074 -0.7103

FA2H
fatty acid 2-
hydroxylase -0.6818 -0.098 -0.5762 -0.48 -0.1964 -0.5395 -0.4046 -0.6577 0.329

FA2H
fatty acid 2-
hydroxylase -0.8646 0.1281 -0.8381 -0.698 -0.6267 -0.6973 -0.7474 -0.8164 -0.2664

FTL
ferritin, light
polypeptide 0.2459 -0.052 0.0545 0.2693 1.3181 0.1233 0.2861 0.0608 -0.248

FTL
ferritin, light
polypeptide -0.3841 -0.643 -0.4763 -0.378 -0.0175 -1.0062 -0.4945 -0.0522 -1.0955

FTL
ferritin, light
polypeptide 0.2257 0.0631 0.1845 0.2094 0.7076 -0.0336 0.3506 0.2684 -0.5253

FTL
ferritin, light
polypeptide 0.456 0.186 0.2243 0.4459 0.9101 -0.2046 0.2801 1.1545 -0.476

FTL
ferritin, light
polypeptide 0.6271 0.2876 0.3862 0.6438 1.1675 -0.0769 0.3875 1.354 -0.5252

CP
ceruloplasmin
(ferroxidase) -0.5654 -0.829 -0.6971 -0.843 -0.976 -0.9208 -0.8784 1.2616 -0.5649

CP
ceruloplasmin
(ferroxidase) -0.2464 -0.238 -0.0513 0.1402 0.0332 -0.2134 -0.0372 0.8696 -0.5955

PANK2 pantothenate kinase 2 0.0413 -0.378 -0.176 -0.213 -0.6247 -0.0137 -0.2085 -0.0399 -0.2607

Discussion and Conclusion
In this work, we have presented an algorithm aimed at
automatically localizing the abnormal cells in MRI images.
The first phase roughly segments the brain structure using
Discrete Curvelet transform by denoising under consideration
with images. In the second phase, the structure is more
precisely localized abnormalities using a fuzzy C-means
clustering based deformable model that adapts its shape to
match the anatomical structure of interest. The method is able
to deal with imprecise and incomplete images, and our tests on
actual images have been successful with statistically valid up

to 90%. Image quality is often affected by various artefacts,
such as noise which could make it difficult to analyse or to
extract useful information. Basically, the goal of image
denoising is to reduce the noise as much as possible, while
retaining important features such as edges and fine details.
Sensitivity measures the proportion of actual positives which
are correctly identified as present in the image. Specificity
measures the proportion of actual negatives as present in the
image. Accuracy is the measurement of the degree to which the
result of measurement is equal to the correct or standard value.
From the Tables 2 and 3, it has been observed that the
Sensitivity, Specificity and Accuracy are more for the proposed
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work. Microarray gene expression analysis of localized area
also confirms the variations in expression comparatively. It
will be helpful in the development of gene modules which will
be very needful for molecular studies in the present day
neuroimaging advancements. Over the past years, there has
been exponential growth in the power and clinical utility of
imaging modalities such as MRI to diagnose and characterize
disease and to guide clinical management. In parallel, the
development of functional genomics tools such as DNA
microarrays has provided powerful methods for explaining the
molecular basis of disease on a genome-wide level.

Discrete Curvelet transform (DCT) can overcome the
disadvantages i.e. isotropic and less coefficients are needed to
account for edge and reach better approximation rates. But it is
not a mature technology and will be improved in future for
reducing complexity and better thresholding function [35].
Similarly the improvements of fuzzy C means are important
tool in segmentation of brain images. Various diagnostic
studies like mammogram analysis, MRI brain analysis, bone
and retinal analysis etc., using neural network approach result
in use of back propagation network, probabilistic neural
network, and extreme learning machine recurrently [36]. The
major limitations of many microarray-based studies continue to
be the difficulty of translating molecular findings into
clinically useful assays or interventions [2]. As shown in this
study, the fusion of imaging and functional genomic datasets
offers the potential for a more rapid clinical translation [37].
This non-invasive prognostic biomarker may be useful in
clinical management; individuals are shown to differ in their
susceptibility to therapies [38]. Although these findings will
need to be further characterized and validated the power of the
combined radiologic and genomic approach provide a
paradigm for rapidly identifying test in the clinical setting.
Future work includes automating the configuration step which
sets the algorithm parameters. The automatic segmentation of
the structure and clustering the segmented areas will lead, to
identifying sets of genes whose expression generates similar
textural patterns in corresponding regions, since it can be
argued that genes with similar expression patterns are also
functionally correlated.
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