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Abstract

Ventricular hypertrophy is one of the prevalent cardiovascular diseases. Quick and efficient diagnosis is
the need of the hour and this paper attempts on an automated left ventricle wall deformation analysis
which helps in the diagnosis of left ventricular hypertrophy. Intensity In-homogeneity Cardiac Magnetic
Resonance (CMR) images are segmented by the proposed hybrid segmentation of Kirsch and modified
Chan-Vese (CV) method with split-Bregman optimization. Co-occurrence features like contrast,
correlation, energy and homogeneity are extracted from the segmented ventricular images. The features
are then analysed in different directions of rotation for both normal and abnormal images in systolic as
well as diastolic phases. Finally the area of the ventricular wall is obtained for both normal and
abnormal images. The results thus obtained show that left ventricular wall deformation analysis using
statistical features helps in the detection of pathological and physiological condition of the ventricles.
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Introduction
Cardio Vascular Disease (CVD) [1] is the prevalent disease
that causes heart failure due to various conditions and
assessment of wall motion function is of eminent importance
for the diagnosis and follow-up of patients with cardiac
diseases. Dobutamine stress echo [2,3] is the technique used in
practice which is limited by the size of the acoustic window.
Wall analysis [4] is individual dependent with modest
quantification and reconstruction. In recent times, detection of
Wall motion abnormality using Cardiac Magnetic Resonance
(CMR) images has attracted significant research attention
[5,6]. Contrast enhanced CMR is an alternative method of
detecting abnormalities in regional wall motion.

One of the standard imaging modalities used in clinical
practice for imaging the heart is CMR Imaging. CMR images
can be used to analyze multiple portions of the cardiac system
like anatomy, function, perfusion, flow and tissue
characteristics in a single examination. Imaging modalities
other than CMR would require multiple studies and the
subsequent difficulty in combining these data from the
different unregistered modalities each with their spatial and
temporal scales. CMR is a technique to study complex
structures such as the left and right ventricle with highly
accurate volumetric measurements without relying on the use
of geometrical assumptions. CMR does not depend on acoustic
window and has a higher resolution and therefore enables more
accurate quantification.

The clinical and preclinical applications of tissue tagging and
DENSE in assessing wall motion mechanics in both normal
and diseased hearts, including coronary artery diseases and
hypertrophic cardiomyopathy are discussed in [7]. The
temporal pattern of the normalized myocardial wall thickness
is used as a feature vector to assess the cardiac wall motion
abnormality [8]. The method exploits the fact that a regular
pattern of stripe tags induces a time dependent frequency co-
vector field tightly coupled to the myocardial tissue and not
affected by tag fading [9]. To extract and use the myocardial
strain pattern from tagged Magnetic Resonance Imaging (MRI)
to identify and localize regional abnormal cardiac function in
human subjects. In order to extract the myocardial strains from
the tagged images, we developed a novel nontracking-based
strain estimation method for tagged MRI [10].

Left Ventricle (LV) wall motion local contractile patterns of the
myocardium [11] can be differentiated from the contractile
properties of myocardial areas impaired by CVD due to
decrease of blood supply. Initial and exact finding of
abnormalities in local LV wall motion considerably helps in the
diagnosis and treatment of CVD [12]. Cardiac function is
predictable by manual estimation and interpretation of LV in
clinics and leads to variable results depending on the human
expertise.

In recent years, computer based analysis have been tried to
analyze LV myocardial function automatically and
quantitatively. According to American Heart Association
(AHA) standard [13], LV is alienated into 17 segments, which
is commonly followed in clinical practice. The two main issues
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in myocardial function assessment are indicators for any
patient characterizing the myocardial function and
development of statistical model that discriminates healthy
from diseased areas.

Punithakumar et al. [14] built a nonlinear dynamic model
which characterized myocardial-segment motions by a naive
Bayes classifier with features like area and radial distances as
inputs with Shannon ’ s differential entropies. Sparse shape
models proposed by Leung and Bosch [15,16] using principal
component analysis and orthomax rotations of two and four-
chamber echocardiographic sequences with localized
variations. The local wall motion is assessed from the resultant
shape parameters. Suinesiaputra et al. [17,18] built
normokinetic myocardial shape models and proposed to use
classifier based on independent component analysis and local
shape characteristics to perceive and confines abnormally
shrinking segments. In Lekadir et al. [19] developed a
statistical model that considers both spatial and temporal inter-
landmark relationships. Lu et al. [20] proposed a pattern
recognition technique using a normalization scheme based on
intra-segment correlation that maps each LV size, intensity
level, and position with the polar coordinates. A differentiable-
manifold analysis is done based on differential geometry
concepts to define a deforming manifold for the
parameterization of the LV domain. Local cardiac
abnormalities are classified from myocardial strains using
linear discriminant analysis and spatio-temporal tensor analysis
[21].

Features such as radial, circumferential strain and tissue-
rotation angle were used to train via manual segmentations of
the myocardium and test a classifier with the proposed method
results. Boundary delineations of endo and epicardial contours
in all frames of a cardiac sequence are used in most of the
existing semi-automatic or automatic methods [22]. Manual
segmentation used in clinical practice is a computationally
expensive and challenging task.

In general, segmentation algorithms require half-prior or full-
prior user interaction and intensive manual training, in addition
to the huge amount of data that is to be analysed. Furthermore,
the resultant segmentation results based on training data may
lead to errors due to informal parameters. Myocardium motion
abnormality detection might be hindered due to inherent
difficulties of segmentation algorithms. Shape analysis based
segmentation algorithms require training with multiple
delineations which significantly needs more amount of prior
information and higher complexity.

Conventional methods for the analysis of regional heart
function are statistics based theoretic measures and unscented
kalman filter approaches, differentiable manifolds, independent
component analysis classifier, pattern recognition technique
based on intra-segment correlation and tensor-based
classification [23,24]. These segmentation algorithms are
mainly limited by the need for extensive prior information and
expensive computation time.

Materials and Methods

Chan-Vese (CV) method
Chan-Vese (CV) method [25,26] for a given image I0 (x,y)
expressed by minimizing the energy function in the domain
given as follows,� �1, �2,� = � . �����ℎ � + � .���� ������ �+�1 ∫������ � �� �,� − �1 2����+ �2 ∫������� � �� �,� − �2 2���� (1)
where, µ ≥ 0, �≥ 0, λ1λ2 ≥ 0 are fixed parameters. µ
Smoothness controlling parameter�, indicates the propagation
speed, force driving the image data inside and outside the
contour can be controlled by λ1 and λ2. C1 and C2 represent
the approximate energy functions of the image intensity inside
and outside C. Level set formulation of this energy function

can be given as 

� = �0 �,� ∈ �:� � = 0,������(�), �1 = �0 �,� ∈ �:� � > 0,�������(�), �2 = �0 �,� ∈ �:� � < 0
By minimizing Equation 1, we obtain�1(�) =∫� ��(�,�)�(�)����∫� �(�)���� (2)
�2(�) =∫� ��(�,�)(1− �(�))����∫� (1− �(�))���� (3)
The corresponding level set function obtained by minimizing
Equation 1 considering the area and energy terms is as follows∂�∂� = �(�) �∇ ∇�∇� − � − �1(��(�,�)− �1)2+ �2(��(�,�)− �2)2 (4)
Where gradient operator is ∇ , Heaviside function is �(�) and
Dirac function is�(�). In a level set function domain,

Heaviside function is �(�) = 1, � ≥ 00, � ≤ 0
While �(�) = ��(�)��  is a Dirac function. The regularized
versions of Dirac function in general is given as follows��(�) = 12 1 + 2�arctan � � (5)��(�) = 1� ��2 + �2 (6)
Detection of edges around the closed curve line c in the image
is limited by the Dirac function ��(�) due to the
comprehensive nature of the algorithm. CV method maintains
numerical stability by the use of Equation (4) that gives
complex differential method. CV method achieves better
segmentation results in the homogeneity region by the global

Nageswararao/Srinivasan

547 Biomed Res2019 Volume 30 Issue 4



minimization of �1and�2 and energy function. In case of
inhomogeneous CMR images, CV method will over segment
the objects for these inhomogeneous boundaries as the local
intensity information is not considered by the energy function
obtained by C1 and C2.

The proposed method
In the proposed automatic Kirsch hybrid method, the weighted
average of the intensities inside and outside the contour of a
point p1 can be approximated by a neighbourhood point p2,
where p1 and p2∈R2 and � is a subset of R2 for an original
image �.
The Kirsch kernel masks are obtained by considering a single
mask and rotating it in eight compass directions. The final
image obtained by the Kirsch operator is considered as Ik and
the obtained energy function is given as��(�1(�1), �2(�1),�) = �1 ∫������(�)(��− �1(�1))2��1+ �2 ∫�������(�)(��− �2(�1))2��1 (7)
The two constants and in CV are replaced by spatially varying
functions �1(�1)and �2(�1) which is given as

�1(�1) = ∫� ��(�1− �2)�(�2)�(�(�2))��2∫� ��(�1− �2)�(�(�2))��2
�2(�1) = ∫� ��(�1− �2)�(�2)(1− �(�(�2)))��2∫� ��(�1− �2)(1− �(�(�2)))��2
Where, Gaussian kernel function is �� and ��(�1− �2) and is
the weight allocated to all intensities at p2.In level set methods,
Lipschitz function�, which represents the evolving curve C is
chosen such that, inside the curve C, it is positive and negative
outside C. The new energy function becomes��(�1(�1), �2(�1),�) = �1∫� (��− �1(�))2�(�(�1))��1�2∫� (��− �2(�1))2(1− �(�(�1)))��1 (8)
Where, H is the Heaviside function.

Split-Bregman [27] method is applied to the modified CV in
order to optimize the combined energy function c1 and c2. The
complex energy function can be reduced to a sequence of
problems in the form,min0 ≤ � ≤ 1 ∇�+ � 〈 �, � 〉 Where� = �∈ � �0 �,� − �1(�1) + �2(�1)2

To convert the constrained into unconstrained problem, we
apply the auxiliary variable, employ the Bregman iteration to
the problem and add a quadratic penalty function for equality
constraint. The final unconstrained problem is written as(��+ 1,��+ 1) = arg min0 ≤ � ≤ 1, � � + � 〈 �, � 〉+ ��2 � − ∇� − �� 2 (9)
��+ 1 = �� + ∇��+ 1 − ��+ 1 (10)
The constrained problem is globally minimized, if the solution

to this equation lies inside the interval [0,1]. If the solution lies
outside the interval [0,1], the energy is strictly monotonic as
the energy is quadratic and the minimizer lies at the endpoint
closest to the unconstrained minimizer. Following are the
element-wise minimization formula:��, � = �� − 1, �� − ��, �� + ��, �� + ��, � − 1� − ��, �� − ��, � − 1�+ ��, �� (11)��, � = �� − 1, � + ��+ 1, � + ��, � − 1 + ��, �+ 1 − ��� �+ ��, � (12)
��, � = max min ��, �, 1 , 0 (13)
Equation (9) is minimized for fixed level set function with
respect to d and obtained��+ 1 = �ℎ����� ( �� + ∇��+ 1, ��) (14)
In this algorithm, Gauss-Siedel function(��,��, ��, ��) is
updated by Equations 11 and 13.

Extraction of co-occurrence features
In general, the texture models belong to either structural or
statistical. In the first case, a family of primitives which
characterizes texture is spatially organized. The second
category involves the use of statistical tools and inference: gray
level co-occurrence matrices, gray level run-length statistics
and gray level difference [28]. Some successful applications
include texture segmentation and texture feature extraction
[29]. Wu et al. [28] developed an active contour model for
image segmentation based on fusion of texture features
obtained from gabor and gray level co-occurrence matrix.

Gray level co-occurrence matrices are widely used and well-
known texture measures. A co-occurrence matrix represents
the histogram of the image in the form of a matrix. The inputs
that occur in pairs of points are the probability density pairs of
gray levels separated by the displacement vector d. suppose
denotes the set of pairs of points for a displacement vector� = (��,��), it can be represented as��(�, �) = �, � , �+ ��, �+ �� :�(�, �) = �, �(�+ ��, �+ ��) = � (15)
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Where, (r, s) M × N, and |.| is the cardinality of a set, d is
distance. The co-occurrence matrix in the direction 0º with
distance d=1 is given by d=(1,1) which will be similar for
matrices in other directions of 45º, 90ºand 135º. Co-occurrence
matrix, distance d selection is important as it depends on
ventricular wall thickness. The distance d for measuring the
texture features of ventricle wall should be chosen to be
smaller or equal to the width of the ventricle wall. Among the
14 Haralick texture features, the features such as contrast,
correlation, energy, and homogeneity are the most relevant
features. These features have been widely used in many
applications and are evaluated as follows

�������� = ∑� = 0
�� �2 ∑� − � = ���(�, �) (16)

����������� = ∑� ∑� (� ⋅ �)�(�, �)− �������� (17)
������ = ∑� = 1

�� ∑� = 1
�� ��2(�, �) (18)

����������� = ∑� = 1
�� ∑� = 1

�� ��(�, �)1 + � − � (19)
Results and Discussion

Image acquisition
Analysis is carried out with 35 data sets consisting both 10
normal and 25 abnormal short-axis CMR images obtained from
3T MR imaging unit (Magnetom Symphony, Siemens Medical
Solutions, Erlangen, Germany) of Rajiv Gandhi Government
General Hospital, Park Town, Chennai. Using steady state free
precession protocol a stack of 20-30 contiguous short-axis
slices of matrix size 174 × 208 with a slice thickness of 7 mm,
covering both the ventricles from the base to the apex were
acquired for a repetition time of 3.4 ms and echo time of 1.7
ms.

Data sets consisting of both normal and abnormal short-axis
CMR images with steady state free precession protocol stack
of 20-30 contiguous short-axis slices obtained from 3T MR
imaging unit of Rajiv Gandhi Government General Hospital,
Park Town, Chennai are considered in the analysis. The CMR
images are usually corrupted with in-homogeneity due to non-
uniform magnetic fields produced by RF coils as well as
disparities due to patient artefacts. In case of hypertrophic
images, in-homogeneity is high because of similarity in the
intensity values of uneven thickening of left ventricular walls.
Thus to enhance the delineation of the ventricles for further
analysis, it is necessary to perform in-homogeneity correction.
The ventricular cavities are structures filled with blood and
have a homogeneous dark region.

Figure 1. Segmentation using CV method and proposed hybrid
method (a) Original image (b) CV method output (c) Proposed hybrid
method output.

Initially CV method is used for ventricular segmentation and as
it was unable to segment the ventricles, CV method was
modified and a hybrid method was developed which segments
the ventricles accurately as shown in Figure 1. This
homogeneous region is segmented by modified CV method
with split-Bregman optimization to isolate the ventricles from
the background. Figure 2 shows the in-homogeneity corrected
and segmented left ventricle in the two main phases of systolic
and diastolic regions. The proposed method still produces
rugged contours of the LV [29,30] partially solve the problem
using Fourier descriptors.

The evaluation of texture feature analysis of the normal and
hypertrophic images is carried out on the complete cardiac
cycle from systole to diastole. The intention is to analyze the
regional cardiac function for early diagnosis of the harmful
cardiovascular diseases like hypertrophic cardiomyopathy.
Ventricular analysis is computed in three steps. In a first step
intensity in-homogeneity correction is performed,
segmentation is followed to select the region of interest (left
ventricle). Finally to analyze the ventricular boundaries,
features of contrast, correlation, energy and homogeneity
matrices are calculated in horizontal direction (0º), right-
diagonal direction (45º), vertical direction (90º), and left-
diagonal direction (135º) with distance d=1. In 0º directions,
Energy and homogeneity features have higher values compared
to those in the other three directions for ventricular border
regions.

In case of contrast feature, its value is lower in horizontal
direction. Higher energy and homogeneity with lower contrast
values indicate that in the horizontal direction there is less
variation in the local textures. In this work, Co-occurrence
features are used to evaluate the left ventricle regional
function. Quantitative analysis of the dynamics helps to
analyze the position and amount of ischemic myocardial injury.
Increased left ventricular myocardial thickness is a feature of
several cardiac diseases like Hypertensive heart disease, dilated
cardiomyopathy, Hypertrophic cardiomyopathy and
Myocardial infarction. In Hypertrophic cardiomyopathy,
heterogeneities in wall thickness as well as composition and
fibre structure are greater and therefore may be associated with
greater variation in regional myocardial performance.
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Figure 2. LV Segmentation at Systole and Diastole. Systole: (a), (b), (c); Diastole: (d), (e), (f). (a) and (d) original images (b) and (e) in-
homogeneity corrected images (c) and (f) segmented left ventricle images. Row 1-normal and Row 2-abnormal.

The existing methods for regional functional analysis have
various limitations like inability to follow the myocardium
from end systole to end diastole and lack of appropriate
markers for measuring wall thickness. It may seem that normal
and hypertrophic has larger intensity values in the direction of
45º, and comparatively smaller feature values were computed
from the other three directions. It demonstrated that RF signals
passing from 45º direction has more intensity and later
distributed to the other direction. From Table 1, it can be
observed that normal image intensity is increasing in the
diastolic phase when compared to the systolic phase.

Contrast is a measure of the amount of local intensity
variations of the image. Correlation gives the closeness of the

neighbouring pixels with the reference pixel in the entire
image. Feature values from both normal and hypertrophic were
calculated in four directions. Contrast and correlation features
are having lesser values for hypertrophic compared to normal
in systolic and diastolic regions. Energy and homogeneity
features are having higher values for hypertrophic in all the
systole and diastole regions compared to that of normal as
shown in Figure 3. Energy is high, if the gray level distribution
is uniform periodically and in case of a constant image, energy
is unity as distribution is uniform.

Table 1. Co-occurrence features for normal and abnormal CMR images in 00 and 450 directions.

SYSTOLE DIASTOLE

FEATURE N N AN

0 CONTRAST 451.9 ± 28.7 438.4 ± 19.3 472.6 ± 17.8 447.9 ± 15.8

CORRELATION 0.93 ± 0.01 0.91 ± 0.01 0.93 ± 0.006 0.89 ± 0.01

ENERGY 0.73 ± 0.02 0.77 ± 0.02 0.73 ± 0.01 0.79 ± 0.01

HOMOGENEITY 0.94 ± 0.006 0.95 ± 0.005 0.95 ± 0.004 0.96 ± 0.002

450 CONTRAST 915.1 ± 50.5 898.4 ± 25.2 956.4 ± 36.7 912.7 ± 31.1

CORRELATION 0.85 ± 0.03 0.79 ± 0.02 0.85 ± 0.01 0.77 ± 0.02

ENERGY 0.71 ± 0.02 0.75 ± 0.02 0.71 ± 0.02 0.77 ± 0.01

HOMOGENEITY 0.91 ± 0.007 0.92 ± 0.006 0.91 ± 0.005 0.92 ± 0.002

The contrast value in the direction of 0º is consistently lower
compared to the 45º direction as shown in Table 1. In 0º
directions, due to high energy and homogeneity, the contrast
will be reduced. The contrast value reduces in hypertrophic due
to similar pixel values and poor boundary identification when
compared to normal images and it increases from systole to
diastole.

Homogeneity is a measure of gray-tone variation in the spatial
distribution of the image. Hence, the more homogeneous
texture, larger the homogeneity value. The hypertrophic
images are structures with larger variation and have higher
homogeneity values in the horizontal direction (0º). The value
of homogeneity is low, if the gray levels have limited range in
the image and vice versa.
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The values of energy and homogeneity for the hypertrophic
walls were consistently higher than the values from normal
ventricular walls with natural cardiac cycles. A discriminator
function based on the energy and homogeneity features can be
used to classify the ventricles in to normal and hypertrophic
classes. The value of homogeneity in normal ventricles is low
due to normal functioning of the wall motion during the
cardiac cycle. The wall index of ventricles in terms of wall area
is calculated from systole to diastole. It is noted that this
differentiates between normal and hypertrophic wall index.
Further, this result is used to classify the images as normal and
hypertrophic.

Figure 3. Co-occurrence features in phases of systole and diastole for
normal and abnormal at 0° and 45 (a) Contrast (b) Correlation (c)
Energy and (d) Homogeneity [0°: Normal-Black, Abnormal-Red;
45°:Normal-Green, Abnormal-Blue]. NS: Normal Systole; ANS:
Abnormal Systole; ND: Normal Diastole; AND: Abnormal Diastole.

Figure 4. Area of normal and hypertrophic images in systole and
diastolic phases.

These texture features give information that normal has an
increased vascularity of a healthy ventricle wall for biological
changes to perform proper wall motion where the hypertrophic
has a bright thinner wall which indicates that there is improper
wall motion. The wall area of hypertrophic images becomes
thinner as the area decreases, which means improper motion
and unsmooth wall area as shown in Figure 4.

The wall area gives an insight about ventricular hypertrophy
which gives information about physiological changes through
which wall index is computed and significantly differs between
normal and ventricular hypertrophy. From the obtained systole

to diastole results, it can be concluded that 0º has less contrast
due to more energy and homogeneity; similar results were
obtained from the data set (35 images). Then averaged values
of contrast, correlation, energy and homogeneity for data set
are computed. By analysing the contrast, correlation, energy
and homogeneity in 0º directions, wall index values are
obtained for different sizes of ventricles. The wall index is low
for normal and high in the case of hypertrophic. By using this
wall index the given images are discriminated as normal and
hypertrophic images.

Conclusion
In this work, an approach to analyze the left ventricular wall
deformation of CMR images has been proposed. The proposed
hybrid segmentation method is applied to CMR images to
extract ventricular portion. Texture features are used to analyze
the ventricular wall deformations in different directions. In
order to perform the deformation analysis, the extracted
features are analysed in different orientations and can be used
for automatic recognition of different types of pathological
detection like ventricular hypertrophy. Finally, this work has
implications for understanding the physiological status of
ventricles in diagnosing cardiovascular diseases using non-
invasive imaging technology.
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