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Introduction
Biomass is a versatile material. It can be directly combusted 
to produce heat; however, by first subjecting it to a thermal or 
biological degradation, it can also be converted to products with 
a higher heating value or to materials with properties superior 
to those of the raw material [1]. When heated in the absence 
of oxygen, biomass decomposes into a range of products; 
including char (solid), tar (liquid) and gas; each with properties 
that differ from the raw biomass. Pyrolysis is considered to 
occur in two stages: primary decomposition of biomass and 
secondary reactions of the products generated in the primary 
decomposition. In order to maximize tar production, the volatiles 
released from the primary decomposition should be removed 
from the reaction zone and condensed before the secondary 
reactions occur, otherwise the volatiles will react further to 
form more gas and char. The thermal conversion of biomass is 
affected by heat and mass transfer, reactor configuration and the 
operating conditions that define the process environment, but the 
underlying reaction kinetics are key to describing, optimizing 
and scaling-up the process. Many studies have been undertaken 
to understand the kinetics of biomass pyrolysis; however, due to 
the heterogeneity of biomass and the complexity of the chemical 
and physical changes that occur during pyrolysis, it is difficult 
to develop a simple kinetic model that is applicable in every 
case. As a result, this field is still an active area of research. In 
this review, different methods to describe biomass pyrolysis and 
different types of kinetic mechanisms are discussed. Other up to 
date reviews on the subject with different scopes can be found 
in the literature [2,3].

Kinetic Models
In order to experimentally determine the kinetic parameters of 
biomass pyrolysis, there are isoconversional methods or model 
fitting methods. The main difference between isoconversional 
and model fitting methods is that the former does not assume 
any model to calculate the kinetic parameters, whereas the 
latter determine the kinetic parameters using a mass dependent 
function. Model fitting methods can be classified as one-
component or multi-component according to how the initial 

biomass is characterized (e.g., specific type of biomass or by its 
components); and as lumped or detailed reaction mechanisms 
depending on how the products are defined (by lumped products 
such as gas, char and tar or by species in each lumped product) 
[3]. The distributed activation energy models (DAEM) differ 
from the previous models in that for each reaction, an activation 
energy distribution is used instead of a single value.

Biomass pyrolysis is normally experimentally studied with 
thermogravimetric analysis (TGA). TGA is used to determine 
the proximate characterization (moisture, volatile content, 
fixed carbon and ash) of the biomass and to study its pyrolysis 
kinetics. TGA measures the weight change of a biomass sample 
under isothermal conditions, where the decomposition is 
studied as a function of mass loss versus time, or non-isothermal 
conditions, as a function of mass loss versus temperature. 
Normally, intrinsic kinetic parameters are obtained from 
thermogravimetric experiments performed with low heating 
rates up to 100 K/min [4] and with fine particles below 1 mm, 
to produce a kinetically controlled regime [5,6]. Intrinsic 
parameters are scale independent and do not include the effect 
of transport phenomena, which make them more reliable for 
scaling up and reactor design. With high heating rates and 
large particle sizes, thermal gradients are observed and the 
process becomes no longer kinetically controlled, but diffusion 
limited [7]. The experimental conditions are not the same as for 
industrial applications, therefore, the kinetic parameters are not 
reliable for extrapolation [4].

All pyrolysis models describe the process in the form of 
mathematical expressions, which can be based on experimental 
data (empirical model) or on the relationship and behavior of the 
system components (mechanistic model). Biomass pyrolysis, 
would ideally be described by a mechanistic model, but 
developing a rigorous mechanistic model would be impractical 
or impossible [8]. That is the reason why most biomass pyrolysis 
models can be categorized as pseudo-mechanistic, since they 
make assumptions about the underlying chemistry but their 
kinetic parameters are fit to experimental data.

In order to describe biomass pyrolysis kinetics from 
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thermogravimetric data, there are isoconversional or model 
free and model fitting methods [9]. For isoconversional 
methods, several TGA experiments at different temperatures 
or heating rates are required for the same value of conversion 
(mass loss), in order to obtain the apparent activation energy 
as a function of conversion. The advantage of isoconversional 
methods is that a reaction model that describes the process is 
not needed [10]. However, a proper reaction mechanism offers 
a closer approach to the intrinsic kinetics of the process [11].  
An isoconversional approach can avoid problems related to 
the uncertainty of determining a specific reaction mechanism 
before analyzing the kinetic parameters [12], and mechanistic 
conclusions about the model could be drawn after the activation 
energy has been determined. The downsides of this method 
are the elevated number of experimental thermogravimetric 
runs, that the rest of kinetic parameters cannot be directly 
calculated [12], and that the kinetics elucidated are apparent 
parameters without a mechanistic interpretation [13]. It is 
recognized, though that with diverse runs of thermal analysis, 
both isoconversional and model fitting methods can produce 
valid kinetic parameters [8].

Model fitting methods, such as single or multiple reaction 
models and distributed activated energy models are widely 
used to describe biomass pyrolysis. In these methods, a kinetic 
mechanism is assumed. A kinetic mechanism describes a reaction 
process in one or several steps, each of them having specific 
temperature-dependent kinetic parameters (e.g., following the 
Arrhenius equation). The first kinetic mechanisms used for 
biomass pyrolysis are based on the primary decomposition of 
a specific type of biomass; therefore, they are not generalizable 
to other types of biomass, since the initial composition of the 
biomass strongly affects its pyrolysis performance [14]. Figures 
1a and 1b show examples of this type of kinetic model. Both 
models feature competitive parallel reactions, and the product 
yields depend on the operating conditions, such as heating rate 
and final temperature. The global rate constant k is the sum of 
all the individual rate constants.

Kinetic models based on the “summative” principle are 
generalizable to a wider range of biomass [15] in which the 
overall decomposition of biomass is the weighted sum of the 
individual decomposition of its three main components, i.e. 
cellulose, hemicellulose and lignin. Therefore, a combination 
of the individual mechanisms of its main components is used, 
each mechanism with a specific set of kinetic parameters. 

The multi-component mechanism is suitable for a wide range 
of biomass as long as the biomass is properly characterized, 
since the amount of its components is the starting point 
for the process analysis. For this mechanism, it is typically 
assumed that no interaction occurs between the components 
during pyrolysis. Figure 2 presents an example of such a 
kinetic model; it also includes an intermediate step leading to 
the formation of an active component, which is believed to 
have the same chemical properties as the initial component 
but with modified physical properties, such as porosity [3]. 
These pyrolysis mechanisms are able to describe the different 
product yields in a lumped manner. To predict the product 
yields from secondary pyrolysis, reactions of the volatile in 
the gas phase before condensing to tar should be taken into 
account (see reaction 4 in Figure 2).

The active component is currently used in most of the kinetic 
mechanisms; however, a reversible behavior of the active 
cellulose under 260°C has been observed [16,17], and a model 
for cellulose decomposition, which includes the step of active 
cellulose in competition with direct decomposition of cellulose 
to volatile, has been suggested [18].

In order to predict the product composition, and not only the 
lumped product yields, a more detailed mechanism is required 
[19,20]. This multi-component comprehensive mechanism is 
developed at a particle scale, and can be used for different reactor 
types with a wide range of operating conditions. An example of 
the detailed cellulose mechanism is found in Figure 3.

The distributed activation energy model [21,22] was firstly 
applied for coal [23] and later adapted for biomass [24]. This 
model can predict, in a lumped manner, the volatile release from 
biomass pyrolysis, assuming that the process complexity can be 
described using a distributed activation energy. The activation 
energy can follow a Gaussian, Weibull or Gamma distribution 
[25]. This distributed activation energy would represent a large 
number of parallel reactions, each of them with their own pre-
exponential factor or sharing the same one in order to have a 
continuous distribution of activation energies [26]. DAEM can 
also be used with three independent reactions corresponding to 
cellulose, hemicellulose and lignin, having each of them their 
own distribution of activation energy [27]. DAEM is considered 
to be the most accurate and reliable of the pseudo-mechanistic 
approaches for biomass pyrolysis [28,29]. Some variations of the 
model, such as a temperature dependence of the pre-exponential 
factor [30] and a double distribution of the activation energy to 
account for the pyrolysis secondary reactions [31-37] have been 
suggested.

Figure 1. One-component pyrolysis mechanism: (a) Wood (Shafizadeh 
and Chin, 1977); (b) Cellulose mechanism (Bradbury et at. 1979) Figure 2. Multi-component pyrolysis mechanism (Miller and Bellan [6])

Figure 3. Cellulose decomposition mechanism (Ranzi et al. [18])
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Conclusion
Overall, different mechanisms have been successful in 
capturing various aspects of the biomass pyrolysis in different 
conditions; however, there is still no consensus on a definitive 
kinetic mechanism. The multi-component mechanism is useful 
when considering mostly lignocellulosic biomass, but other 
components, like extractives and inorganic components, might 
also have a significant role on pyrolysis of biomass. There is 
still room for improvement in developing kinetic models able 
to describe biomass pyrolysis for a wider range of operating 
conditions, since the kinetic parameters obtained are often 
suitable only for a certain range of temperatures. Improving 
the mechanisms in terms of predicting the product yields and 
composition, suitability for a wider range of biomass and 
operating conditions are imperatives to consider in future 
kinetic models. Nevertheless, the final choice of a mechanism 
will always depend on the aim of the study, since more detailed 
mechanisms entail also an increase in complexity of the analysis.
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