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Abstract

Laser diffraction (LD) and next generation impactor (NGI) were recommended for measurement of
particle size for pressurized metered dose inhaler (pMDI) in Pharmacopoeia. Existing literature had
shown that high relative humidity affects in vitro aerosol drug delivery of pMDI. In this study, we
investigated the effect of environmental condition (temperature and humidity), flow rate and device
temperature on the particle size distribution (PSD) assessment of solution pMDI (Atrovent: Ipratropium
Bromide Aerosol, HFA134a) and suspension pMDI (Ventolin: Salbutamol sulfate Aerosol, HFA134a) by
LD (Spraytec). We also studied the effect of temperature on the PSD assessment of pMDI by NGI. There
was a decrease in particle size with higher humidity or faster flow rate, both for Ventolin and Atrovent.
With the environmental temperature increase, the particle sizes of Atrovent were increase. However, the
particle sizes of Ventolin were decrease at first and then increase with environmental temperature
increase. In addition, with the device temperature increase, the particle sizes were decrease at first and
then increase, both for Ventolin and Atrovent. For testing with NGI, mass median aerodynamic
diameter (MMAD) was reduced and the fine particle fraction (FPF) increased both for Ventolin and
Atrovent when comparing 25°C to 5°C. Therefore, these factors (environmental temperature and
humidity, flow rate, and device temperature) had significant influence on the performance of LD or
NGI, and should be controlled in the particle size measurement of pMDI.
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Introduction
Pulmonary delivery is prominent way for delivering drug to
respiratory tract and as a potential non-invasive administration
route for the systemic and local delivery of active
pharmaceutical ingredients (APIs) [1]. The advantages are
rapid onset, avoidance of the first pass effect, and higher
efficiency of the delivered drug [2-5]. There are three types of
formulations used for pulmonary delivery: pressurized metered
dose inhalers (pMDI), dry powder inhalers (DPI), and
nebulizers. pMDI is released at high velocity and requires a
simultaneous inhalation by the patient, and has a widely
application because of carrying portability [6]. Commercial
pMDI products include solution and suspension as the
difference for physicochemical characteristics of APIs [7].
There are many factors to influence the therapy performance
[8], such as patient's age, flow pattern, drug aerodynamic
diameter [9,10]. Many studies reported that aerodynamic
diameter in the range from 0.5 to 3 μm will result in alveolar
deposition; aerodynamic diameter in the range from 2 μm to 6
μm will result in tracheobronchial deposition; aerodynamic
diameter greater than 5 μm will result in deposition in the

upper airways. Therefore, to ensure the drug to be deposited in
the lung and the range for majority of drug aerodynamic
diameter must be controlled from 1 to 5 μm [11-13]. Therefore,
it’s necessary to build a robust and accurate measurement of
PSD for evaluation of inhaler formulation. There are many
characteristic methods have been developed and mainly
divided static and dynamic measurement as for the different
measurement principle. The dynamic measurement is the
traditional particle size analysis in the Pharmacopeia. It utilizes
multiple stages impactor with progressively decreasing cut
sizes to simulate the dynamic process of aerosol in lung. Then
to collect the drug from different stage using suitable method
and to yield mass fractions of the drug by a validated chemical
detection which is a direct assessment of API [14-18]. The
representative of static measurement is laser diffraction (LD)
which is a rapid and noninvasive measurement of droplet
diameter. The process of measurement is that aerosol particles
pass through the laser beam, and then photodetector captures
the intensity and angles of light diffraction pattern [19-23]. The
intensity and angles are relevant to the particle size, shape,
density, and other physical properties. The data of PSD is
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calculated by combined vector equations (Mie equation) with
the incident wave, scattered wave and the wave inside the
droplet. Therefore, this information is contributed to
formulation development [24-26].

Although the impactor is currently considered as “golden
standard” for inhaler test, the operation is labor-intensive and
comparatively slow to operate compared with LD. It is
necessary to sufficiently apply LD instrument to development
of inhaler. However, it is still uncertain for the control of
environment condition by using LD in Pharmacopeia. Many
studies investigated particle diameter changes with variation in
environmental conditions. Shemirani et al. studied the effect of
ambient humidity on regional delivered dose with solution and
suspension MDIs by using an Alberta Idealized Throat, and
found that the dose delivery of pMDI formulations are affected
by environmental condition. With increasing relative humidity,
the deposition in mouth-throat was increase and the lung dose
fraction was decrease for both solution and suspension MDIs.
Increasing temperature resulted in decreased mouth-throat
deposition and increased lung deposition [27-29]. Morin et al.
investigated the performance of pMDIs under a variety of
temperature conditions by using an Alberta Idealized Throat
and the in vitro lung dose was measured by gravimetric assay.
They found that when ambient temperature and device
temperature were decrease, the in vitro lung deposition was
decrease [30,31]. Fink et al. found that pMDI lower respiratory
tract delivery rate is 16.2% under wet condition, while 30.4%
under dry condition [32,33].

As we all known, the amounts of drug deposited in lung are
relevant to the aerodynamic diameter [34,35]. Therefore, the
variety of lung deposition may be relevant to the variety of
particle size when the environmental condition changed [36].
Presently, the environmental condition changed to affect the
particle size of pMDI by using LD or NGI has not been
reported [37-39]. In this study, we investigated the effect of
environmental condition (temperature and humidity), flow rate
and device temperature on the PSD assessment of pMDI by
LD. And we also studied the effect of temperature on the PSD
assessment of pMDI by NGI. The purpose of this study is to
provide a reference for an accurate assessment of pMDI by
either LD or NGI. We found the influence factors on particle
size measurement of pMDI. Hope the Pharmacopoeia
Committee of each country that will set a standard to regulate
particle size measurement of pMDI.

Materials and Methods
Ventolin (Salbutamol sulfate Aerosol, Propellant: HFA134a,
White or almost white suspension, 100 µg*200 press),
Manufacturer: Glaxo Wellcome S.A.; Atrovent (Ipratropium
Bromide Aerosol, Propellant: HFA134a, Clear transparent
liquid, 20 μg*200 press).

Particle size and distribution measurement by LD
Two commercial pMDI particle size distribution was measured
by a Spraytec LD (Malvern instruments, UK) at different

system temperatures, humidities, test flow rate and Device
temperature. The LD with the inhalation cell was placed in the
chamber (JinLiXin Ltd., China) which can control temperature.
The chamber also has the humidity controller. System
temperature variables: (5°C, 25°C, 40°C, humidity: RH
30%-50%, flow rate: 30 L/min); Humidity variables: (45%,
90%, system temperature: 25 ± 2°C, flow rate: 30 L/min).
Before the experiment, in order to reach the system
temperature or humidity, the system was incubated for 4 h.
Flow rate variables: (0, 15, 30, 40, 50 L/min, system
temperature: 25 ± 2°C, humidity: RH 30%-50%). Device
temperature variables: (25°C, 40°C, 60°C, flow rate: 30 L/min,
system temperature: 25 ± 2°C, humidity: RH30%-50%). pMDI
device was placed in the (Shanghai YiHeng Scientific
Instrument Co., Ltd.) for 4 h to an equilibrium. The pMDI was
joined with an adaptor to the inlet of a USP throat which above
the inhalation cell. Vacuum pump (HCP5, COPLEY Scientific,
UK) was connected to the outlet of the inhalation cell.

Before the test, shake the pMDI for 5 s, and connect to the
USP throat, discharge 1 immediately (Each new pMDI by
firing to discard the first 5 spray). Repeat the procedure. The
number of discharge was 3 times (n=3). Important parameters
Dv (50) (the particle size below which 50% of the aerosol) was
recorded LD Software.

Figure 1. DV(50) of Ventolin and Atrovent test by LD at three system
temperatures; *p<0.05; **p<0.01.

Particle size characterization by NGI
The pMDI was joined with an adaptor to the inlet of the NGI
(COPLEY Scientific, UK). The NGI was operated at 30 L/min
by the vacuum pump. Before the test, shake the pMDI for 5 s,
and connect to the USP throat, discharge 1 immediately (Each
new pMDI by firing to discard the first 5 spray). Repeat the
procedure. (Ventolin: n=10; Atrovent: n=30 (To reach the
HPLC quantitative line). The samples were collected by
ultrapure water (Mili-QA10, USA) and assayed to quantify
Ventolin and Atrovent deposition in the USP throat and each
NGI collection cups. Quantitative analysis was performed by
HPLC. NGI important parameters: MMAD (Mass median
aerodynamic diameter), GSD (Geometric standard deviation)

Zhang/Song/Zhan/Hu/Tan

9583 Biomed Res 2017 Volume 28 Issue 21



and FPF (Fine particle fraction) were calculated by CITDAS
software (COPLEY Scientific, UK).

Chromatographic conditions
The sample collected from NGI was analyzed by HPLC
(LC-20A, Shimadzu corporation, Japan). Ventolin:
Chromatographic column: XDB-C18 (Agilent, 150 × 4.6 mm,
5 μm); Mobile phase: 0.08 mol/L. sodium dihydrogen
phosphate solution (pH 3.10 ± 0.05) and methanol (85:15, v/v);
UV detection wavelength: 276 nm; Flow rate: 1.0 mL/min;
Injection volume: 20 μL; Column temperature: 40°C; Injection
time: 5 min.

Atrovent: Chromatographic column: XDB-C18 (Agilent,
150*4.6 mm, 5 μm); Mobile phase: 0.012 mol/L Sodium 1-
heptanesulfonate solution (pH 3.20 ± 0.05) and acetonitrile
(78:22, v/v); UV detection wavelength: 210 nm; Flow rate: 1.0
mL/min; Injection volume: 20 μL; Column temperature: 40°C;
Injection time: 15 min [40].

Statistical analysis
Using the software (SPSS 20.0, SPSS Inc., Chicago,USA) to
get analysis of significant results.

Figure 2. The frequency distribution of particle volumes of Ventolin
and Atrovent test by LD at three temperatures; A: Ventolin; B:
Atrovent.

Figure 3. DV(50) of Ventolin and Atrovent test by LD at two
humidities; *p<0.05; **p<0.01.

Results

Effects of the system temperature (LD)
As shown in Figure 1, Ventolin: Dv(50) tested at 40°C
increased by 37.57% and 33.47%, respectively, compared with
at 25°C and 5°C. It was a highly dominant difference, but no
significant difference between at 25°C and 5°C. Atrovent:
Dv(50) tested at 40°C and 25°C increased by 47.99% and
47.59%, respectively, compared with at 5°C. It was a highly
dominant difference, but no significant difference between at
25°C and 40°C.

As shown in Figure 2, Ventolin: there were no 0.1-1 μm small
particles at 3 temperatures of 5°C, 25°C and 40°C. And there
was a phenomenon that the maximum peak increases first and
then decreases with increasing temperature. Atrovent: there
were 0.1-1 μm small particles at 3 temperatures. And the
maximum peak curve shift right with increasing temperature.

Figure 4. The frequency distribution of particle volumes of Ventolin
and Atrovent test by LD at two humidities; A: Ventolin; B: Atrovent.

Effects of the system temperature (NGI)
As shown in Table 1, FPF and MMAD tested between 5°C and
25°C have a highly dominant difference. MMAD tested at 5°C
increased by 38.14% (Ventolin), 73.75% (Atrovent),
respectively, compared with at 25°C; FPF reduced 36.13%
(Ventolin), 36.22% (Atrovent).

Effects of the system humidity (LD)
As shown in Figure 3, Dv(50) tested at RH 25 ± 1.3%
increased by 23.29% (Ventolin) and 34.58% (Atrovent),
respectively, compared with RH>90%. Both were a highly
dominant difference.

As shown in Figure 4, Ventolin: there was 0.1-1 μm small
particles at RH>90%. The maximum peak curve shift right
with reducing humidity, and the 0.1-1 μm small particles
disappeared at RH25 ± 1.3%. Atrovent: there were 0.1-1 μm
small particles at 2 humidifies. And the maximum peak curve
shift right with reducing humidity.

Effects of the flow rate (LD)
As shown in Figure 5, Ventolin: Dv(50) tested at 0 L/min
increased by 47.51%, 38.25% and 41.48%, respectively,
compared with at 40 L/min, 30 L/min and 15 L/min. It was a
highly dominant difference, but no significant difference
between at 40 L/min, 30 L/min and 15 L/min. Atrovent:
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Dv(50) tested at 40 L/min decreased by 16.84% and 13.80%,
respectively, compared with at 15L/min and 30L/min. It was a
highly dominant difference. Dv(50) tested at 50 L/min

decreased 11.56%, compared with at 40 L/min (highly
dominant difference), no significant difference between at 30
L/min and 15 L/min. 0 L/min cannot trigger the measurement.

Table 1. The value of MMAD and FPF tested by NGI at 5C and 25C.

Drug 5°C, MMAD (μm) 25°C, MMAD (μm) 5°C, FPF (%) 25°C, FPF (%)

Ventolin 4.869 ± 0.064 3.012 ± 0.017* 17.82 ± 1.47 27.901 ± 0.945**

Atrovent 3.387 ± 0.090 0.889 ± 0.001* 24.411 ± 1.270 38.275 ± 2.112**

Note: *p<0.05; **p<0.01.

Figure 5. DV(50) of Ventolin and Atrovent test by LD at different flow
rate; *p<0.05; **p<0.01.

Figure 6. The frequency distribution of particle volumes of Ventolin
and Atrovent test by LD at different flow rate; A: Ventolin; B:
Atrovent.

As shown in Figure 6, Ventolin: there were 0.1-1 μm small
particles at 4 flow rates of 0 L/min, 15 L/min, 30 L/min and 40
L/min. And the ratio of 0.1-1 μm small particles increased with
increasing flow rate, the maximum peak curve shift left with
increasing flow rate. Atrovent: there were 0.1-1 μm small
particles at 2 flow rates of 15 L/min, 30 L/min. There were no
0.1-1 μm small particles at 2 flow rates of 40 L/min and 50 L/
min. And the maximum peak curve shift left with increasing
flow rate.

Effects of the device temperature (LD)
As shown in Figure 7, Ventolin: Dv(50) tested at 40°C
increased by 63.10% and 62.25%, respectively, compared with
at 25°C and 60°C. It was a highly dominant difference, but no
significant difference between at 25°C and 60°C. Atrovent:
Dv(50) tested at 25°C increased by 29.76% and 27.62%,
respectively, compared with at 40°C and 60°C (highly

dominant difference). Dv(50) tested at 60°C increased 2.96%,
compared with at 40°C.

As shown in Figure 8, Ventolin: there was 0.1-1 μm small
particles at the temperatures of 25°C, but no at 25°C and 60°C.
And the maximum peak curve shift left with increasing
temperature, but shift right when the temperature increased to
60°C. Atrovent: there were 0.1-1 μm small particles at 3
temperatures of 25°C, 40°C and 60°C. And the maximum peak
curve shift left with increasing temperature, but shift right
when the temperature increased to 60°C.

Figure 7. DV(50) of Ventolin and Atrovent test by LD at three device
temperatures; *p<0.05; **p<0.01.

Figure 8. The frequency distribution of particle volumes of ventolin
and atrovent test by LD at three device temperatures; A: Ventolin; B:
Atrovent.

Discussion
At present, it is not clear how to control the environmental
condition (temperature and humidity), flow rate, and device
temperature when measured pMDI particle sizes by LD
(Spraytec). Although it is recommended that NGI must be
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precooled at 5°C for at least 90 min to reduce the bias and
variability caused by heat transfer-related evaporation when
measured nebulizer particle size by NGI. However, the control
of test condition is uncertain for pMDI by using NGI [30,41].
As for our results, these factors (environmental temperature
and humidity, flow rate, and device temperature) had
significant influence on the performance of LD or NGI, and
should be controlled in the particle size measurement of pMDI.

As described in Figure 5, there are large influences on the
droplet particles with temperature increased. Although the
extent is difference for suspension and solution formulations.
As for the excipients content are different for formulations.
Small particles (0.1-1 µm) were all not detected at three
temperatures for Ventolin. However, those small particles were
detected for Atrovent at three temperatures. In addition, as to
our study, the results of pMDI particle sizes are different when
measured at different temperature. With the increasing of
temperature, the particle sizes of Atrovent are increasing.
Interestingly, the particle sizes of Ventolin are decreased when
the temperature are increased from 5°C to 25°C. And with the
temperature increasing to 40°C, the particle sizes are increased.
The differences may be related to the composition of
formulation. Ventolin is suspension and aerosol contained drug
particles and propellant. So, a single actuation may produce
one particle in several droplets. Propellant only droplets
evaporated rapidly and leaving the residual particles to
condensation. As regulated formulation manufacturing process,
the drug particles should be micronized at a certain size and
most of those are larger than 1 μm. Conversely, Atrovent is
solution formulation and may be yielded one particle for every
actuated droplet. Therefore, small particles may be detected for
Atrovent and particle sizes were temperature-dependent. It
corresponds to the results. But for NGI, the MMAD was
reduced and the FPF increased both for Ventolin and Atrovent
when comparing 25°C to 5°C. This phenomenon is attributed
that during the testing, evaporation may be caused by heat
transfer from the NGI to the droplet cloud. So, it was
recommended that NGI must be precooled at 5°C for at least
90 min when measured the nebulised aerosol droplet size.
Therefore, it is necessary to regulate the environmental
condition when measured pMDI particle size by NGI
[30,42,43].

As showed in Figure 7, with the increasing of related humidity,
the particle sizes were decreased. The phenomenon may be
attributed to that aerosol droplets are easily evoprated at low
humidity (Rh25 ± 1.3%). However, the influence for Atrovent
is stronger than Ventolin. The humidity decrease from
RH>90% to RH25 ± 1.3%, the increase in Dv (50) on average
is 30.36% (Ventolin) and 52.86% (Atrovent). At the low
humidity, the small droplets are ease to vapor, causing an
apparent shift to larger diameter of the PSD. So, the outcome is
that measured particle sizes are increase as the humidity
decrease. As described in Figure 9, the operation flow rate also
had an influence on particle size of pMDI. As for the results,
the particle sizes were decrease with the flow rate increase. It
corresponds to Feddah’s research. The reason is that there may
be a highly turbulent field when the high-velocity pMDI plume

encounters slower inhalation air flow. In addition, the faster
inhalation air flow is, the shorter droplet evaporation time.
Apart from that, the increasing of air flow may decrease the
density of droplet and to stimulate evaporation [44]. So, it may
result in decrease of particle size. There was a flow-dependent
behavior for Atrovent (solution formulation). And that
influence was weak for Ventolin (suspension formulation). It
should relate to the difference of formulation composition,
such as actuator orifice, valve design and exipencient [45].

Figure 9. The frequency distribution of particle volumes of Ventolin
and Atrovent test by LD at different flow rate. A: Ventolin; B:
Atrovent.

As we all known, the production of pMDI aerosol particles
mainly rely on pressure of propellant evaporation. Therefore,
the particle sizes depend on the pressure of propellant,
diameter of actuator orifice and formulation composition. The
pressure of propellant is related to temperature, actuator orifice
and formulation composition, but the orifice and composition
cannot be changed for a certain pMDI product [42]. As to
results, with the device temperature increase, the particle sizes
were decrease at first from 25°C to 40°C and then increase
from 40°C to 60°C, both for ventolin and atrovent. The change
of Atrovent is weaker than Ventolin. When the temperature
increase from 25°C to 40°C, the decrease in Dv (50) on
average is 63.10% (Ventolin) and 29.76% (Atrovent). Then
temperature increase from 40°C to 60°C, the increase in Dv
(50) on average is 164.97% (Ventolin) and 3.05% (Atrovent).
These differences may be attributed that propellant
composition. Except for the HFA134a, the excipients of
Atrovent were also included water and ethanol. But excipient
of Ventolin was only HFA134a [27]. Related study had been
reported that ethanol may reduce overall formulation vapor
pressure and increasing evaporation time because of much
lower vapor pressure [46].
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