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sponging” non-coding RNAs.

Zhujun Shen*, Guangcheng Liu

Department of Cardiology Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking 
Union Medical College, Beijing, China

Pathological cardiac hypertrophy is a maladaptive remodelling process in myocardium induced by variable clinical 
diseases and Heart Failure (HF) comes to the endpoint of myocardium hypertrophy. Non-coding RNAs (ncRNAs), 
including long non-coding RNA and circular RNA, were identified involving in cardiac hypertrophy remodelling. 
Competing endogenous RNA (CeRNA) network are the most accepted hypothesis and numerous studies has shown 
that lncRNA and circRNA can act as miRNA sponges which ultimately regulating the expression of downstream mRNA. 
Here we summarize the non-coding RNA with miRNA-sponging characteristics and the reported CerRNA networks, as 
well as the therapeutic value for siRNA drugs in CeRNA regulatory axis in the near future.
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always lies on the unmet need to early detect the process 
from myocardial hypertrophy to heart failure sensitively 
and to reverse the enlargement of cardiomyocytes and 
fibrosis of myocardium effectively [9,10]. Patients are 
always diagnosed with cardiac hypertrophy only when 
they appear obvious clinical symptoms. Therefore, it is 
urgent to find sensitive molecular biomarker or reversible 
drugs for this knotty problem.

Thanks to the advancement on sequencing techniques 
(such as next-generation sequencing, single-cell RNA 
transcriptome sequencing) in recent years, major 
breakthroughs for seeking potential stimuli and signaling 
mechanisms have been postulated on genetic (DNA), 
transcriptional (mRNA) and translational (protein) levels 
[11-15] in pathological cardiac hypertrophy, such as 
genetic mutations, impaired Ca2+ handling, mitochondrial 
dysfunction, m6A-methyletation and so on. Notably, 
researchers are gathering attention into complex mediatory 
networks between coding and non-coding transcriptome 
that occurs significant difference both in health heart and 
hypertrophy heart from animal model or human species, 
which brings non-coding RNA into our horizon, shedding 
new lights on the complexity [16].

Non-coding RNAs and CeRNA network

Endogenous non-coding RNAs [17-20], including 
microRNAs (miRNAs), long non-coding RNAs (lncRNAs) 

Introduction
Cardiac hypertrophy, defined as the enlargement of 
cardiomyocytes both in cell size and cardiac mass [1], is 
commonly induced by atrial/ventricular wall stress and/
or overloading of periphery pressure. According to its 
primary stimuli, cardiac hypertrophy is generally classified 
into two types, thus, physical cardiac hypertrophy (like 
exercise-induced hypertrophy, usually reversible) and 
pathological cardiac hypertrophy (gradually progress to 
heart failure). Mechanically, the latter one (pathological 
hypertrophy) was descripted as maladaptive cardiac 
remodelling and its inner pathological process is thought 
to be secondarily induced by variable clinical diseases, 
including hypertension [2], aortic stenosis [3], mitral or 
aortic regurgitation [4], Ischemic Cardiac Disease (ICD) 
[5], cardiomyopathy (caused by genetic mutation [6,7]) 
and so on. Without any active prevention, progressive 
deterioration on myocardium would, in turn, lead to the 
final step-Heart Failure (HF) [8], leaving one of the major 
public health problems with high morbidity and mortality. 
Here, we discussed the reported pathological causes for 
cardiac hypertrophy and focused on the potential clinical 
value of non-coding RNAs (ncRNAs).

Molecular mechanisms for pathological cardiac 
hypertrophy

During clinical diagnosis and treatment, contradiction 
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that lncExACT1 functioned by sponging miRNA-222 
and regulating the expression of DCHS2 gene, then, 
inducing pathological cardiac hypertrophy by regulating 
calcineurin and Hippo/Yap1 signaling pathways. These 
results provide a potentially tractable therapeutic target for 
clinical methods on cardiomyogensis [29]. What’s more, 
Crosstalk on lncPvt1/miR-196b/OSMR [30], axis also 
illustrate a novel therapeutic role in cardiac hypertrophy. 
By knocking down lncPvt1 expression, miR-196b would 
increase and attenuate cardiac hypertrophy by targeting 3’ 
Untranslated Region (UTR) of OSMR (major mediator of 
cardiac remodelling). Same regulation by lncRNA CHRF/
miR-93 [31], and lncRNA CYTOR/miR-155 [32], were 
proven in vivo and in vitro. The former CeRNA crosstalk 
regulates the AKT3 signaling pathway which improving 
cardiac hypertrophy. Knocking-down of CHRF (Cardiac 
Hypertrophy Related Factor) expression shows an 
inhibition on ISO-stimulated cardiomyocytes. The latter 
crosstalk shows the similar regulating mechanism as loss 
of function experiments shows the opposite trend on IkkB 
(P65) protein. Sometimes, lncRNAs play a reversible 
role in cardiac hypertrophy. For instance, lncRNA H19 
suppresses cardiac hypertrophy through the microRNA-
145-3p/SMAD4 axis [33]. Another research also 
strengthens the therapeutic role of lncH19 on regulating 
cardiac CaMKIIδ by sponging miR-675 [34].

Crosstalk between circRNA and miRNA on cardiac 
hypertrophy

CircRNAs, unlike their linear counterparts, are mainly 
synthesized by non-canonical mode on RNA splicing-
what is, circularized by joining the 3′ and 5′ ends together 
with back-splicing [35]. As reported, circRNAs contain 
plenty of miRNA Response Elements (MREs), leading to 
the inhibition of target miRNA function and subsequently, 
regulating downstream target mRNAs.

For example, circ_000203 can enhance the expression of 
fibrosis-associated genes (Col1a2 and CTGF) in cardiac 
fibroblasts by depressing targeted miR-26b-5p and induce 
cardiac hypertrophy and fibrosis [36]. While in contrast, 
Heart-Related circRNA (HRCR) can protect heart from 
pathological hypertrophy by targeting miR-223/ARC axis 
[37], since miR-223 acts as a positive regulator of cardiac 
hypertrophy. Moreover, circNfix/miR-145-5p [38], 
network could target Activating Transcription Factor 3 
(ATF3) in cardiomyocytes and attenuate hypertrophy. Other 
identified circRNAs were also reported in hypertrophic 
heart, such as circSlc8a1/miR-133a axis [39], which 
was identified from pull-down techniques and identified 
as promising target for clinical drug by inhibiting the 
expression of Connective Tissue Growth Factor (CTGF). 
Researchers also try to inhibiting the circular function as 
silencing circHIPK3 can reverse hypertrophy by sponging 
miR-185-3p [40], via CASR gene expression. Engineered 
artificial circmiRs [41], were also reported by sponging 
miR-132 axis as an active attempt for pre-clinical research 
in reducing the expression of MYH7 gene (Table 1).

and circular RNAs (circRNAs), are generally functional 
sequences without traditional protein-encoding function, 
which are unlike the “Central Dogma of Gene Expression”. 
Nowadays, scientists are broadly acknowledged that non-
coding RNAs exert a diverse repertoire of functions at 
transcriptional and post-transcriptional levels [21]. 

Among their various functions, hypothesis of Competing 
endogenous RNA(CeRNA) [22], is currently well-accepted 
and attract increasing attention, which mainly engaged 
with lncRNAs and circRNAs acting as miRNA sponges. 
Theoretically speaking, miRNAs are a class of short 
sequencings (characterized as 20-22 nt) which exerting 
their function by silencing or degrading target specific 
mRNAs [23]. Meanwhile, lncRNAs and circRNAs contain 
plenty parts of nucleotide sequences what are identified as 
miRNA Response Elements (MREs) [24], thus, miRNA 
recognition and combining site. By interacting with 
MREs, lncRNAs and circRNAs can sponging miRNA and 
regulating its activities, thus, to inhibiting or stimulating 
messenger RNA (mRNA) transcription ultimately [25-27]. 

Such molecules interactions were defined as Competing 
endogenous RNA network (CeRNA network). So 
far, CeRNA networks have been found in various 
cardiovascular diseases [25], including atherosclerosis, 
Myocardial Infarction (MI) and, undoubtfully, cardiac 
hypertrophy. Technically, researchers would use 
sequencing techniques (usually bulk sequencing or 
circRNA sequencing) to find Differential Expressing 
Gene (DEGs) of non-coding RNAs and mRNA in animal 
or human specimens. Then, down-regulating miRNAs 
targeted by circRNA and mRNA can be predicted with 
bioinformation analysis [18] or predictive online software 
like “miRDB”. Construction of CeRNA networks is 
always built with “cytoscape” software by using Protein-
to-Protein Interaction (PPI) function. After that, gain-of-
function and loss-of-function experiments in vivo and in 
vitro should be applied for repeated verification. What’s 
more, dual-luciferase assay report and RNA pull down 
experiments are selective for further verification. Around 
all above procedures, a convincing CeRNA network 
would be reported and as for therapeutic research, siRNA 
on CeRNA networks should be designed and injected in 
mice model with rounds of courses to see the efficacy.

Crosstalk between lncRNA and miRNA on cardiac 
hypertrophy

LncRNAs are a series of sequences usually ranging a 
length of more than 200 nt [21,24], characterized by 
the absence of Open Reading Frame (ORF) with low 
abundance and/or nuclear localization. Though lack of 
coding function, plenty of studies have illustrated that 
lncRNAs act as miRNAs sponges to regulate downstream 
mRNA on cardiac hypertrophy and heart failure [28]. 

For example, lncExACT1 was reported over-expressed in 
Transverse Aortic Constriction (TAC) surgical mice which 
progressed to heart failure after 2-8 weeks. It is found 
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Table 1: CeRNA networks by lncRNAs or circRNAs in cardiac 
hypertrophy.

CeRNA network Target Regulation References

lncRNA ExACT1/
miR-222

Hippo/
Yap1 axis Stimulation  [29]

lncPvt1/miR-196b OSMR Stimulation  [30]

lncRNA CHRF/miR-
93 Akt3 axis Stimulation  [31]

lncRNA CYTOR/
miR-155 NF-κB axis Stimulation  [32]

lncRNA H19/miR-
675

CaMKIIδ 
gene Inhibition [34]

lncRNA H19/miR-
145-3p

SMAD4 
axis Inhibition  [33]

circ_000203/miR-
26b-5p

Col1a2 and 
CTGF Stimulation  [36]

circRNA HRCR/miR-
223 ARC gene Inhibition  [37]

circNfix/miR-145-5p AFT3 gene Inhibition  [38]

circSlc8a1/miR-133a CTGF gene Inhibition  [39]

circHIPK3/miR-85-
3p CASR gene Inhibition  [40]

Future perspectives

Recent years, a group of ncRNA-miRNA interactions 
and construction of CeRNA networks have given 
scientists brand-new insights for clinical treatment on 
cardiac hypertrophy. With advancement on sequencing 
technologies, Gain- and loss of functions are prominent 
methods to verify the mechanism of CeRNA networks. 
We can assure that the picture of molecular mechanism 
on non-coding RNAs was unfolding gradually (Figure 1).

Undoubtedly, ncRNAs have been broadly acknowledged 
to play a vital role in cardiovascular diseases [20]. As 
for cardiac hypertrophy, future research should focus 
on myocardium-associated genes and fibrosis-related 
genes that interacted by ncRNAs [1,12]. From clinical 
perspective, all above researches deem ncRNAs and 
miRNA axis as underlying molecular therapy target for 
cardiac hypertrophy treatment [25]. Identification of 
ncRNAs molecules and construction of CeRNAs networks 
[18,42], both in human and animal models may facilitate 
the comprehensive regulation relationship on pathological 
myocardial hypertrophy directly or indirectly [43-45].

Figure 1. Graphical abstract for competitive endogenous RNA 
network.

Conclusion
In conclude, with the rise of molecule therapy like 
siRNAs drug in cardiovascular disease (like “inclisiran” in 
hyperlipidema), future research will focus on strategies on 
potential targets of ncRNAs. Valuable molecules siRNAs 
to hold back cardiac hypertrophy on the transcriptional 
level via CeRNA regulating network may prepare for 
further basic-to-clinic drug translation and clinical 
application. If so, cardiac hypertrophy treatment may 
come into a new era.
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