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Abstract

Introduction: Compressed Sensing (CS) has been recently proposed for accelerated MR image
reconstruction from highly under-sampled data. A necessary condition for CS is the sparsity of the
image itself in a transform domain.
Theory: Sparse data helps to achieve incoherent artifacts, whichcan be removed easily using various
iterative algorithms (for e.g. non-linear Conjugate Gradient) as part of CS. The image should be
reconstructed by a non-linear algorithm that enforces both the sparsity of the image representation and
consistency of the reconstruction with the acquired samples.
Methods: This work presents the results obtained by applying CS on non-Cartesian k-space data
acquired using highly under-sampled Radial and Spiral schemes. The CS reconstruction is performed
using Individual Coil Method (ICM) and Collective Coil Method (CCM). The ICM approach considers
the under-sampled data from each coil individually whereas CCM considers under-sampled data from
the coils collectively for the reconstruction of the MR images.
Results and Conclusion: Artifact Power (AP) and SNR are used as quantifying parameters to compare
the quality of the reconstructed images. The results show that radial trajectory is a suitable choice for
the CS in MRI. In terms of the method compatibility,ICM shows promising results.
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Introduction
Recent advancements in the field of MR imaging are
significant. Despite having numerous advantages over other
imaging modalities, a drawback of MRI is its time consuming
data acquisition process. Magnetic Resonance Imaging (MRI)
is a non-invasive, non-ionizing medical imaging modality [1].
MR image is acquired by first placing the patient under a
strong magnetic field and then applying the Radio Frequency
(RF) pulses along with the application of the Phase Encode
Gradient (GPE) and Frequency Encode Gradient (GFE). The
size of the image decides how many times the RF pulse needs
to be applied, hence making the MRI scan a time consuming
process [2].

CS has been recently proposed to accelerate the MR data
acquisition process [3,4]. CS complements MR imaging
because many MR images are already sparse or can be made
sparse using some sparsifying transform [5] (e.g. wavelet
transform, finite difference etc.). Further acceleration can be
achieved for CS by acquiring the under-sampled data along
non-Cartesian schemes, which is the main focus of this paper.

There are many data acquisition schemes in MRI. Variable
Density (VD) [6] Random under-sampling is one good option

for quality reconstruction using CS for Cartesian, Radial and
Spiral trajectories [7]. In an image most of the information is
located at the center of the k-space. Variable Density random
under-sampling complements this data arrangement as it
focuses on extracting information from the center rather than
the borders of the k-space; hence VD-Cartesian, Spiral and
Radial trajectories [8] are used for CS reconstruction in this
work.

The aim of this paper is to investigate the performance of CS
for highly under-sampled Variable Density Cartesian (VD-
Cartesian), Spiral and Radial trajectories. The data acquired
through non-Cartesian k-space trajectories can contribute
towards motion robustness and rapid imaging [9].

Theory

Compressed sensing (CS)
The general approach in data handling for imaging is to collect
data and then compress it. Putting it the other way around,
collecting compressed data at the time of acquisition is what
CS does. One of the many solutions to engineer potential scan
time reductions is to apply the CS technique to MRI.
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Some necessary conditions for CS to be applicable are [10]:

The image itself should be sparse in a transform domain

Sampling should be incoherent (providing incoherent artifacts)

Non-linear algorithm for reconstruction

Sparsity is the number of non-zero pixels present in the data.
Non-zero pixels representing relevant information scattered
throughout the image make CS more applicable. Incoherent
sampling accounts for incoherent artifacts which are easier to
remove as compared to coherent artifacts [4]. The image
should be reconstructed by a non-linear algorithm that enforces
both the sparsity of the image representation and consistency
of the reconstruction with the acquired samples.

The conventional unconstrained equation used for CS in the so
called Lagrangian form [10] is:�������( ℱ��− � 22+ � �� 1) (1)
Where ℱ� is the under-sampled Fourier operator, m is the
estimated vector, is the measured k-space data from the
scanner, λ being the regularization parameter and ψ the
sparsifying operator. Image sparsity can be enhanced either by
any sparsifying operator, or by subtracting/adding prior to
image estimation, or both [10]. The sparsifying transform used
in this paper is the finite difference transform usually referred
as Total Variation (TV) [11]. TV is the finite difference
between two consecutive rows and columns for a single line of
matrix [12].

Trajectories
Exploring data acquisition in MRI using non-Cartesian
trajectories is a viable research option as it has many
advantages over the uniform-Cartesian data (Figure 1). The k-
space area is well utilized, focusing essential information at the
center allowing to ignore the areas on the boundary. Scan time
is also significantly reduced as more phase encoding lines are
skipped using non-Cartesian data [13,14].

Figure 1. Arbitrary k-space Trajectories.

The data along non-Cartesian trajectories is interpolated
through Non-Uniform Fast Fourier Transform (NUFFT) using
Min-Max Interpolation. The Min-Max approach provides
lower approximation error than conventional interpolation
error [15,16].

Gridding
The image reconstruction using non-Cartesian data is slow as
compared to Cartesian data because the data is non-uniform in
the k-space and we cannot apply fast Fourier transform to non-
uniform data. To speed the reconstruction process gridding is
used [17,18]. The main idea of gridding is to map the non-
Cartesian data onto a rectilinear grid using a convolution
kernel and then compensating for the convolution using an
image deapodization function [9,19].

An integral part of gridding is the density compensation
procedure. Unlike uniform Cartesian k-space trajectories, non-
Cartesian k-space trajectories are not uniform, thus evaluating
all the points as equal functions while reconstructing the data
can result in major artifacts. An ideal way to perform density
compensation is the post-compensation approach where we
keep track of the k-space energy at each point and then divide
by the particular energy after convolution [7]. But this
approach is only possible if the energy is varying slowly in the
data. Usually this approach doesn’t work for a majority of the
k-space trajectories as it doesn’t work well with the image
deapodization step [20].

The other more viable option for performing density
compensation is the pre-compensation approach where density
compensation is performed prior to convolution. The density of
every point is measured by using a density compensation
function (DCF). Many of these functions are already available
and can be designed as per requirement. A simple calculation
of the voronoi diagram [9] of the sample distribution is used
here (this works well for most of the general trajectories). The
pre-compensation technique has been adopted for the work
presented in this paper.

Convolution is then performed using a pre-defined kernel
function; the usual choice is the Kaiser- Bessel function [9].
The transform of the gridding kernel should be known in order
to do deapodization, whichis a point-to-point multiplication of
the image with the inverse of the transform kernel in order to
minimize the error caused by convolution.

Methods

CS image reconstruction algorithm
Figure 2 shows all the steps of the CS reconstruction process
used in this paper. The first step is to design the k-space of the
trajectory (k) under consideration. In the second step the
Density Compensation Function (DCF) () is calculated because
we have used non-Cartesian trajectories, so the density of the
k-space samples varies throughout the data. Third step includes
the calculation of under-sampled Fourier Operator (ℱ�) by
taking the non-Uniform Fast Fourier Transform (NUFFT) of
the trajectory designed in the first step. In the next step under-
sampled, density compensated data () is calculated by
convolving ‘w’ with ‘ℱ�’. The inputs to the algorithm are the
under-sampled data (), under-sampled Fourier Operator (ℱ�),
Sparsifying Operator (here TV is used as the Sparsifying
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operator), Regularization Parameter (α or λ) and to calculate
SNR certain area for signal and noise should be declared [21].

Figure 2. Reconstruction Algorithm for Arbitrary k-space
Trajectories using CS.

In this paper, the image is reconstructed using Non-Linear
Conjugate Gradient Solution [10] for CS optimization problem,
which uses the following equation: ������� ℱ��− � 22+ ��� � (2)
Image reconstruction algorithm using CCM and ICM
The data acquisition for CS is performed using multiple
receiver coils. There are two ways to reconstruct the MR image
in CS from the under-sampled data. One approach is to take the
acquired under-sampled data from all the receiver coils and
applying the sum-of-squares method to have a composite
image, and then applying the CS algorithm to this composite
image for reconstruction as shown in Figure 3a, this method is
named as Collective Coil Method (CCM) in this paper. The
other technique is to consider each under-sampled coil data
individually for reconstruction, then applying the sum-of-
squares method to the individually reconstructed images to
obtain a final result as shown in Figure 3b; this method is
named as Individual Coil Method (ICM) in this paper.

Figure 3. Reconstruction Algorithm for CCM and ICM.

MR experiments
Fully sampled data is acquired using eight channel receiver
coils in uniform Cartesian form. The Scan parameters used for
acquiring this human head data (1.5T and 3T) are: TE=10msec,
TR=500msec, FOV=20cm, Bandwidth=31.25 KHz, Slice
Thickness=3mm, Flip Angle=50 degrees, Matrix
Size=256x256x8. This uniform Cartesian k-space data is
transformed into VD-Cartesian, Radial and Spiral trajectories
and then these trajectories are under-sampled for various
acceleration factors (2X, 4X, 6X, 8X, 10X).

Complex white noise (SD (σ)=0.004) is added to every data set
prior to reconstruction. At different acceleration factors, the
number of projections for radial trajectory vary by a factor
under consideration (e.g. at 2x the total projections (256) are
under-sampled by a factor of 2 etc.). The spiral trajectory used
is multi-shot, the number of shots being 41 and each shot being
rotated by an angle of 2π/N (where N is the number of shots).

Evaluation of reconstruction
This paper uses two quantifying parameters i.e. Artifact Power
(AP) and Signal-to-Noise Ratio (SNR) to judge the quality of
reconstruction.

Signal-to-Noise Ratio (SNR): A Region-of-Interest for Signal
(ROS) and Region-of-Interest for Noise (RON) is selected as
shown in Figure 4. SNR is calculated by using the following
formula [22,23]:

Figure 4. Region of Interest for SNR Calculation using Brain and
Phantom data.���  �� = 20���10 ���� ������ .  ��������� �� ��� (3)
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Artefact power (AP): AP is the difference between the
original reference image and the reconstructed image. The
concept of AP has been derived from ‘‘Normalized Sum of
Square Difference Error’’. The AP in the reconstructed image
is calculated on the basis of the reference image (Original
Image). AP can be calculated using the following formula
[22,23]:

�� =  Σ ���������� �,� − �������������� �,� 2∑ ���������� �,� 2 (4)
In the above formula, if ���������� = �������������� then AP
will be zero which tells that there is no difference between the
reference image and the reconstructed image. Similarly, if the
AP value is bigger it means there is a considerable difference
between the reconstructed image and the reference image. So
for better image the AP should be less.

Results

Reconstruction using CCM (1.5 Tesla Head Data)
Figure 5 shows the reconstructed images, using Collective Coil
Method (CCM), taken at different acceleration factors using
various k-space trajectories where the acceleration factor varies
vertically and the k-space trajectories are shown horizontally
for the reconstructed images.

Figure 5. Reconstructed Images Using CCM.

The graph in Figure 6a shows the AP (artifact power) for VD-
Cartesian, Radial and Spiral trajectories, whereas in Figure 6b
SNR is shown for these trajectories using Collective Coil
Method. The diamond (blue) represents the trend for VD-
Cartesian, square (red) for Radial and triangle (green) for the
Spiral trajectories.

Figure 6. AP and SNR Calculation for Collective Coil Method.

Reconstruction using ICM (1.5 Tesla Head Data)
Figure 7 shows the reconstructed images, using Individual Coil
Method (ICM), taken at different acceleration factors using
various k-space trajectories where the acceleration factor varies
vertically and the k-space trajectories are shown for the
reconstructed images along horizontal lines.

Figure 7. Reconstructed Images Using ICM.

The graph in Figure 8a shows the AP (artifact power) for VD-
Cartesian, Radial and Spiral, whereas in Figure 8b the SNR is
shown for these trajectories using Individual Coil Method. The
diamond (blue) represents the trend for VD-Cartesian, square
(red) for Radial and triangle (green) for the Spiral trajectories.

Figure 8. AP and SNR Calculation for Individual Coil Method.

Comparison CCM vs. ICM (3Tesla Head Data)
The graph in Figure 9a shows the AP (artifact power) for VD-
Cartesian, Radial and Spiral trajectories using Collective Coil
Method (CCM). The graph in Figure 9b shows the same using
Individual Coil Method (ICM). The diamond (blue) represents
the trend for VD-Cartesian, square (red) for Radial and triangle
(green) for the Spiral trajectories.

Figure 9. AP Calculation for CCM vs ICM.

The graph in Figure 10a shows the SNR (Signal to Noise ratio)
for VD-Cartesian, Radial and Spiral trajectories using
Collective Coil Method (CCM). The Figure 10b shows the
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same using Individual Coil Method (ICM). The diamond (blue)
represents the trend for VD-Cartesian, square (red) for Radial
and triangle (green) for the Spiral trajectories.

Figure 10. SNR Calculation for CCM vs ICM.

Comparison CCM vs. ICM (1.5 Tesla Phantom Data)
The Figure 11 shows that the proposed method retains the high
resolution features in the reconstructed image using ICM. The
results have been obtained at different acceleration factors
using various k-space trajectories.

Figure 11. Shows the reconstructed image of 1.5T phantom image by
varying the acceleration factor for different trajectories.

Discussion
Image reconstructions are performed by implementing CS
algorithm on Individual Coil Method (ICM) and Collective
Coil Method (CCM) on the under-sampled VD-Cartesian,
Radial and Spiral trajectories. Three different data sets (1.5T
Human Brain, 3T Human Brain and 1.5T Phantom) are used to
test the results for the proposed methods. The data set acquired
by the 3T MR scanner provides better results in terms of AP
for both methods (CCM and ICM) as compared to the data set
of 1.5T scanner. In terms of SNR 1.5T human brain data
provides better results as compared to 3T scanner data for ICM
but for CCM the results are opposite i.e. 3T scanner data gives
better output.

CS for Radial trajectory provides better results i.e. it gives
smaller Artifact Power (AP) for both ICM and CCM. It
performs better than variable density Cartesian. In terms of
SNR, VD Cartesian trajectory outperforms both the Spiral and
Radial trajectories. If we compare AP and SNR of the results
generated by the two reconstruction methods, ICM provides
better results in terms of AP and SNR (it gives low values for
AP and higher values of SNR).

A generalization of which non-Cartesian trajectory is superior
cannot be justified because certain trade-off factors are present
with respect to the quantifying parameters considered but it can
be safely concluded from this work that radial trajectory is a
suitable choice for the CS in MRI. In terms of the method
compatibility ICM shows promising results. Further work
should be done in order to explore the compatibility of other
non-Cartesian trajectories for CS in MRI reconstruction.
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