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Abstract

Deaths due to cancer have increased rapidly in recent years. Among all the cancer diseases, breast
cancer causes many deaths in women. A digital medical photography technique has been used for the
detection of breast cancer by physicians and doctors, however, they need to give more attention and
spend more time to reliably detect the cancer information from the images. Doctors are heavily reliant
upon Computer Aided Diagnosis (CAD) for cancer detection and monitoring of cancer. Because of the
dependence on CAD for cancer diagnosis, researchers always pay extra attention to designing an
automatic CAD system for the identification and monitoring of cancer. Various methods have been used
for the breast-cancer image-classification task, however, state-of-the-art deep learning techniques have
been utilised for cancer image classification with success due to its self-learning and hierarchical feature-
extraction ability. In this paper we have developed a Deep Neural Network (DNN) model utilising a
restricted Boltzmann machine with “scaled conjugate gradient” backpropagation to classify a set of
Histopathological breast-cancer images. Our experiments have been conducted on the Histopathological
images collected from the BreakHis dataset.
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Introduction
Many patients in the world suffer from cancer. There are
different kinds of cancer, among them Breast Cancer (BC) is a
prominent one, and is specifically a serious health threat to
women. As a case study, Figure 1 shows the death statistics
due to BC in Australia for the last 5 years. This figure shows
that the death trend due to BC increased every year at an
alarming rate in Australia. This might be considered as an
example of the BC situation throughout the world. Obviously
this causes a serious human and social impact. Proper and
timely detection of BC can save or at least improve the
condition of susceptible people. Along with other conditions,
the detection of BC largely depends on investigation of
biomedical images captured by different imaging techniques
such as X-Rays, mammogram, magnetic resonance,
histopathological images, etc. For perfect diagnosis of BC, a
biopsy can produce reliable results with confidence.
Histopathological images are used as a standard image for
cancer diagnosis. However, their analysis is very time-
consuming and needs extra attention for the perfect diagnosis
along with the expertise of the physicians and doctors.

The history of using machine-learning techniques for general
image classification is a long one. Using the advancement and
the deliverable engineering of image classification, scientists
have used such techniques for medical image classification. An
important part of the image classification is appropriate

selection of features such as the Gray-Level Co-occurrence
Matrix (GLCM), Tamura, etc. as well as classifier models such
as Support Vector Machine (SVM), Random Tree (RT),
Random Forest (RF), etc. [1]. In a few cancer image-
classification cases, scientists also extract information on
nuclei. Diz et al. utilised both GLCM and Gray-Level Run
Length Matrix (GLRLM) for mammogram image (400 images)
classification and achieved 76.00% accuracy [2] where they
employed the RF algorithm. The RF algorithm has also been
used for histopathological image classification. Zhang et al.
[3], Bruno et al. [4], and Paul et al. [5] utilised
histopathological images with different features. Paul et al. [5]
utilised the Harlick features, Bruno et al. [4] used the curvelet
transform and Local Binary Pattern (LBP), Zhang et al. [3]
implemented the curvelet transform, GLCM and CLBP
together for classification.

The SVM is another popular and useful classifier for image
classification. For the very first time Bazzani et al. utilised
SVM techniques for breast image classification. Martins et al.
[6] utilised Ripleys Function along with an SVM for
Mammogram image classification and obtained accuracy,
sensitivity and specificity of 94.94%, 92.86% and 93.33%,
respectively.. Chang et al. [7] utilised an auto-correlation
coefficient for ultrasound breast-image classification and
obtained 85.6% accuracy. Kavitha et al. [8] implemented
histogram, textural (using the Gabor Filter) features and a few
clinical features which were extracted from the images. They
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also resorted to SVM techniques for the image classification
and obtained 90% Accuracy. Chang et al. classified a set of
tomography images (250 images) using SVM techniques
where the images are surrounded by speckle noise [9].
Fractional Fourier Transform (FFT) information has been used
as features by Zhang et al. [10] for Mammogram image
classification using SVM along with Principal Component
Analysis (PCA) techniques. Dheba et al. [11] utilised Laws
texture features to classify images into Benign and Malignant
(MIAS database) and achieved 86.10% accuracy. They
performed their experiment on 200 images and obtained 92.16
± 3.60% accuracy. It is found that the kernel method along
with the SVM technique can improve the classifier
performance. Naga et al. [12] classified the Micro-calcification
clusters in Mammogram images using Gaussian and
polynomial kernels.

Figure 1. Death statistics due to BC for the last 5 years in Australia.

Along with other classifier techniques NN techniques have
always been a strong tool for image classification. In 1991
Dawson et al. utilised an NN for a BC image classifier
[13].Literature shows that, the neural network technique has
been very successful for the analysis and classification of
images. Recently, the Deep Neural Network (DNN) technique
has emerged as a popular method for the analysis of images for
the classification task, following the famous model AlexNet
proposed by Krizhevsky et al. [14]. They proposed their
techniques for the image-classification issues [14] based on a
Convolutional Neural Network (CNN), a branch of DNN.
After the work of Alex, advanced engineering of this technique
has been used for various image-classification tasks. Hai et al.
proposed a fast-scanning Deep Neural Network (fCNN)
method for the image-classification task [15], where they
utilised seven convolutional layers for analysis of the images.
Wu et al. [16] used CNN for global feature-extraction for
mammogram (40 images) image classification and achieved a
sensitivity of 75.00% and specificity 75.00%. Mammographic
breast-density classification was done using HT-L3
convolution by Fonseca et al. [17]. Rezaeilouyeh et al. [18]
implemented both local and global features and utilised CNN
for histopathological image classification. They utilised the
shearlet transform for extracting local features and achieved a
best accuracy of 86 ± 3.00%. Xu et al. [19] utilised the DCNN-
Ncut-SVM methods together for Histopathological breast-
image classification and obtained an ROC of 93.16%. For

Nuclease detection, the spatially constrained CNN was
employed by Sirinkunwattana et al. [20]. Huynh et al.
combined transfer learning and ensemble techniques for
Mammographic image classification. Kooi et al. [21] resorted
to global crafted features along with the Transfer learning
method (VGG model) for Mammographic image classification.

The Deep Belief Network (DBN) is another branch of DNN
which is a recent concept, proposed by Hinton et al. in 2006
[22]. For the first time they used Restricted Boltzmann
Machine (RBM) techniques for Modified National Institute of
Standards and Technology (MNIST) character recognition.
Discriminative Deep Belief Networks (DDBN) were proposed
by Yan Liu et al. for visual data classification and they utilised
backpropagation techniques [23]. Ahmed et al. preferred the
DBN method for the breast-cancer classification task [24]. For
their analysis, they used the Wisconsin breast cancer data set,
which gives nine features for each image. So, instead of
directly working on the images, the authors used the available
features and DBN techniques with backpropagation.

The literature shows that a few studies have been performed on
histopathological breast image classification using Tamura
features. Most of the work has been conducted on well-known
datasets like MIAS and DDSM along with some
histopathological images. Fabio et al. provide a new set of
histopathological breast images in the BreakHis dataset and
they did BC image classification using a few dierent classifiers
doing image classification largely relies on how we select the
features for the classification task. In this paper we have
classified histopathological (BreakHis) breast images using
Tamura features and RBM along with contrast corrections. The
overall architecture of this paper is organised as follows:
Section 1 gives a brief description concerning the breast-image
classification issues; Section 2 image-classification model;
Section 3 describes the proposed RBM model for the
classification; Section 4 describes the contrast correction
algorithms in a brief; Section 5 describes the feature-extraction
methodology; Section 6 describes and analyses the results; and
Section 7 concludes the paper.

Image-Classification Model
Successful image classification depends on a number of steps
such as image pre-processing, feature-extraction and using
image-classifier tools. Depending on the image pre-processing
steps we have proposed two algorithms:

• Algorithm-1: This algorithm does not apply any pre-
processing steps before feature-extraction. Algorithm 1 directly
extracts Tamura features from each image, and the features are
fed to the proposed model of the restricted Boltzmann Machine
(RBM) for image classification. Figure 2 shows the overall
workflow of Algorithm 1.

• Algorithm 2: In the pre-processing steps, this algorithm
enhances the contrast of each image in the dataset using the
proposed contrast-enhancement algorithm, and then extracts
the features. After that all the features are fed to the proposed
model of the Restricted Boltzmann Machine (RBM) for image
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classification. Figure 3 shows the overall workflow of
Algorithm 2.

Figure 2. Workflow of Algorithm 1.

Figure 3. Workflow of Algorithm 2.

Proposed RBM Model for Image Classification
In 1985, Hinton et al. proposed a Boltzmann Machine (BM),
which contains two layers named visible and hidden. The
Restricted Boltzmann Machine (RBM) uses the concept of the
BM. The dierence between the RBM and the BM is that the
connections of the hidden and visible layers are disjointed in an
RBM. That is, in an RBM there are no intra-connections
between the hidden layers and the visible layers. Figure 4
illustrates the BM and RBM machines. Let v and h represent
the set of visible and hidden units. The energy of the joint
configuration {v, h} for BM can be defined as [22,25].

Figure 4. Graphical representation of BM and RBM models.� �, ℎ = − 12���� − 12ℎ��ℎ− ���ℎ + ���� (1)
Where

• W is the weight between the visible and the hidden layers.

• L is the weight from visible to visible layer.

• J is the weight from hidden layer to hidden layer.

Since we are working on an RBM, therefore L=J=0. So we
have

E (v, h)=-vTWh+Bias → (2)

E (v, h)=-vTWh-aTv-bTh → (3)� �, ℎ = − ∑� = 1� * ∑� = 1� * ��, ��ℎ− ∑� = 1� * �� − ∑� = 1� * ℎ�(4)
where

• Bias=-(aTv+bTh)

• a is the bias for the visible units

• b is the bias for the hidden units

• i is the number of visible units

• j is the number of hidden units.

The joint probability for visible and hidden units can be
defined as

P (v, h)=1/z e-E(v,h) → (5)

where Z is the partition function defined as

� =∑�, ℎ �−� �, ℎ (6)
Through marginalising the hidden vector h we can find the
probability of the vector v as

� � =∑ℎ � �, ℎ = 1�∑� exp − � �, ℎ (7)
As there is no connection in the hidden unit, the binary state hj
of hidden unit j is set to 1 with the probability

� �� = 1 ℎ =   � ��+∑� ����, � (8)
Given a hidden vector v, we can easily calculate the step of
visible units:

� �� = 1 ℎ =   � ��+∑� ℎ���, � (9)
Where σ (x) is the sigmoid function. Using Equations 8 and 9
and Gibbs sampling techniques, we can easily update the
visible unit vectors and hidden unit vectors. The weight
function can also be improved by using the following equation:

δwi,j=(< vi, hj > data − < vi, hj > model) → (10)

Computing < vi, hj >data is comparatively easy, whereas the
computation of the value < vi, hj >model is very dicult. The
value of < vi, hj >model can be calculated by sampling methods
like Gibbs, Contrastive Divergence (CD), Persistent
Contrastive Divergence (PCD) and Free Energy in Persistent
Contrastive Divergence (FEPCD).

We know that a Deep Belief Network (DBN) is constructed by
stacking RBM models, acting as a skeleton for the construction
of the DBN. In our model, we use 4 RBM layers, RBM-1,
RBM-2, RBM-3 and RBM-4. RBM-1 has 18 inputs, because
we have selected 18 features. Furthermore this RBM has 50
output units. Both RBM-2 and RBM-3 have 50 input units and
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50 output units. Lastly RBM-4 has 50 input units and 2 output
units, as we classify our data into two classes. The whole
procedure is presented in Figure 5.

Figure 5. DBN model for analysis of the data.

The input is first fed to the visible layer, which passes its input
to the first RBM named RBM-1. The data moves back and
forth between the RBM-1 layer and the visible layer until
RBM-1 reaches some final decision. For updating the weight
values and the neuron values, the network utilises Equations 8
and 9 for calculating the final values. As RBM-1 finally
calculates its values, it passes these to the next hidden layer
known as RBM-2. In this case, RBM-1 works as a visible layer
for RBM-2.

Table 1. Detailed description of each block of the machine.

Parameters RBM-1 RBM-2 RBM-3 RBM-4 Output
layer

Input by output 18 by 50 50 by 50 50 by 50 50 by 50

No. of epochs 50 50 50 30 50 by 2

Sampling
method

CD CD CD CD

This same procedure is carried on throughout the network. As
the network analysis proceeds, the weight value W1 is
developed between the visible layer and layer RBM-1. The
weight value W2 is developed between the RBM-1 layer and

layer RBM-2. The weight value W3 is developed between the
RBM-2 layer and RBM-3 layer, and the weight value W4 is
developed between the RBM-3 layer and the DBN layer. In our
model we have used back propagation for fine tuning all the
parameters along with the weight values, these being W1+1,
W2+2, W3+3 and W4+4. All the particulars of our model and its
sampling method are summarised in Table 1.

Contrast-Enhancement
The background image information of the histopathological
images coexists with the fore ground image information, and
also the images suer from poor contrast. To overcome these
issues we have implemented the contrast-enhancement
technique of [26] with modifications such as:

• Step 1: Background subtraction

At first the original image information is subtracted from the
non-uniform background information, separated using a low-
pass Gaussian filter with standard deviation σ1. Depending on
the value of σ1, step 1 (Figure 6) successfully removes the
background variations globally.

• Step-2: Local adjustment

To improve the contrast information locally, the output image
from step 1 is divided pixel-wise by the variance of its spatial
neighbour to minimise the contrast. Dividing the whole image
by the standard deviation σ2 may amplify the noise inside the
images, which degrades valuable image information. Step-2
shown in Figure 7.

Figure 6. Block diagram of step 1.

Figure 7. Block diagram of step 2.

• Step-3: Noise control

To reduce the noise amplification Khan et al. [27] proposed a
correction factor M:

� = 1− exp(− ������) (11)
where p=2. Factor M multiplies the output of phase-2. Here, σf
is the local standard deviation and C is a user-defined
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parameter which controls the background noise. Step-3 has
illustrated in Figure 8.

Figure 8. Block diagram of step 3.

The overall algorithm for the normalisation task (Algorithm-1)
is shown below.

Algorithm :1 Proposed contrast enhancement method

1. Input the image I.

2. Step-1:

Calculate Iσ1 using Gaussian filter I1 (.): Iσ1 ← I σ1 (I).

• Calculate I1 where I1=I-Iσ1.

3. Step-2:

• First find Iroot
1 from Iroot

1 ← I1/2
1.

• Filter the image Iroot1 n times with n dierent values of σ2 with the Gaussian
filter Iσ2

n (). The values of all the available filtered images can be represented by
the set I1σ2(all)={I1σ2 (1), I1σ2 (2), I1σ2 (3)........I1σ2 (n)}. Here I1σ2 (n) represents
the filtered image Iroot

1 with the Gaussian filter I(n)
σ2 ().

• σ2 (all)={(σ1/k ) to (σ1/l) with increment ∆}; Here ∆ R+ and k>l and n=|σ2
all|.

• Select {I1σ2 (max)}:{I1σ2 (max)}=max{I1σ2 (all)}

• Select Rmax: Rmax ← maxpixel strength {I1σ2 (max)}

• Divide the image pixel-wise: I2=I1/{I1σ2 (max)}

4. Step-3:

• Calculate C: C=Rmax × t, where t is a user-defined value.

• Calculate value of M: M=1-exp (-{I1σ2 (max)p/p × Cp}).

5. Calculate Inorm Image as: Inorm=I2 × M.

6. Perform histogram equalisation on the image Inorm and find out the Iout.

Feature-Extraction
One of the important steps of image classification is extracting
the features from the images. Consider fRGB (u, v)={fR (u, v),
fG (u, v), fB (u, v)} be an RGB image, here R, G, B represents
the Red, Green, and Blue channel information. From the image
fRGB (u, v), Tamura features vector TR, TG and TB has been
extracted from each of the respective channels shown as Figure
9.

Coarseness
Fineness of texture is measured by coarseness. The measure of
coarseness is influenced by the scale as well as the duplication
percentage of the components within that area. The largest size
of the texture is also identified by coarseness [28]. To calculate
the coarseness within the image, average values are calculated
at all the available points by varying the window size. Centred

at the point (u, v) and for a window of size 2k × 2k, the average
value can be formulated as

2k × 2k non-overlapping neighbouring-window average
variations have been calculated in both the horiz�� �, � =∑� = � − 2� − 1�+ 2� − 1− 1∑� = � − 2� − 1�+ 2� − 1− 1 � �, �22� (12)
ontal and vertical directions:

εk,h (u, v)=|k (u+2k-1, v)-k (u-2k-1, v)| → (13)

εk,t (u, v)=|k (u, v+2k-1)-k (u, v-2k-1)| → (14)

Irrespective of the direction, the value of k which maximises
the output values is considered an optimal value. Sbest is then
calculated as

Sbest=2k → (15)

Figure 9. Tamura features extraction from the three different
channels.

Contrast
The intensity within a texture contains a significant amount of
information. Contrast represents the dierence of the level of
intensity within a texture. The following four factors are
considered when contrast is measured [29]:

(a) The range of Gray level within an image

(b) The polarisation of the Gray-level distribution

(c) Sharpness of edges

(d) Period of repeating patterns.

Considering the above four factors contrast can be defined as

Where

α4=μ4/σ4: is known as kurtosis
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μ4: Fourth moment about the mean

σ4: Variance2

Directionality
Directionality is a global property that refers to the shape of
texture primitives and where they are placed within a specific
region [29-31].

Hd: is the local direction histogram

no: is the number of peaks of Hd

wo: o is the range of the oth peak between valleys

o: o is the oth peak position of Hd

Line-likeness
Let PDd (i ,j) represent a directional co-occurrence matrix,
where each element of this matrix is defined as “the relative
frequency with which two neighbouring cells separated by a
distance d along the edge direction occurs” [29,30]. Co-
occurrences in the same direction are weighted by +1, and co-
occurrences with directions perpendicular to each other are
weighted -1. Using PDd (i, j) the line-likeness can be measured
as [30].

Regularity
Regularity can be defined as

R1=1-r (σcrs+σcon+σdir+σlin) → (20)

Where r is the normalising parameter [29].

Roughness
According to the results of Tamura et al.’s experiments, a
combination of coarseness and contrast best aligns with the
psychological results [29].

Results and Discussion
We have utilised the BreakHis dataset for our experiments,
where the dataset is grouped into m={40X, 100X, 200X,
400X} groups where X represents the magnification factor.
Each of the images in this dataset is RGB in nature and 700 ×

460 pixels in size. We have used Tamura features as attributes
and extracted the features from all the channels, which
produces a total of 18 features.

The experiments have been performed on each of the
individual groups of the dataset separately; 70 percent, 15
percent, and 15 percent of the data have been used for the
training, validation and testing purposes, respectively. Let each
group in the dataset be represented by the set Xm.

Here the value of S is equal to 18. Tm represents the total data
of the group

Tm=trm+tsm+tvm → (22)

trm=training data of group m;

tsm=test data of group m;

tvm=validation data of group m.

yi {Benign, Malignant}.

The results of all the experiments of this chapter have been
evaluated through the Confusion Matrix (CM) and a few other
performance-measuring parameters. A two-dimensional table
which illustrates the performance of a classifier is known as a
CM [32]. If a classifier provides 100% accuracy performance
then all the non-diagonal elements of the CM will be zero [33].
Table 2 shows a graphical representation of a CM for a binary
classifier along with a few performance-measuring parameters.

Table 2. Few Performance measuring parameters along with CM.

• TPR=TP/(TP+FN)

• TNR=TN/(TN+FP)

• Accuracy=TP+TN/(TP+FN+TN+FP)

Results and comparison
In Figures 10 and 11, the a-d images show the train, validation,
test and over-all performance when we use the 40X, 100X,
200X and 400X datasets for Algorithms 1 and 2, respectively.
When we use the 40X database and Algorithm 2, the train, test,
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validation and overall accuracies remain almost the same, at
around 88.7%. When we use the 100X dataset, the Test shows
less accuracy than the train and validation performance. When
we use the 200X dataset, the train, validation, test and overall
accuracies are 89.4%, 86.3%, 87.7% and 86.8%, respectively.
When we use the 400X database, the overall accuracy achieved
is around 88.4%. These confusion matrices also show that,
when we utilised Algorithm 1 for the 40X, 100X, 200X and
400X magnification-factor database, 15.5%, 22.60%, 29.90%
and 14.6% of the malignant images have been misclassified as
benign images. However, 24.30%, 36.10%, 50.50% and 26.9%
of the benign images have been wrongly classified as
malignant images. The overall accuracy achieved for the 40X,
100X, 200X and 400X cases was 82.20%, 74.70%, 69.00%
and 81.70%, respectively; for all magnification factors a
greater percentage of the database has been misclassified as
benign. When we utilised Algorithm 2, 10.60%, 13.10%,
10.02% and 11.20% of the malignant data were misclassified
as benign images for the 40X, 100X, 200X and 400X cases,
respectively. On the other hand, 13.40%, 19.40%, 14.50% and
12.40% of the data has been classified as malignant though
they are originally benign images for the 40X, 100X, 200X and
400X cases, respectively.

Performance: The Mean-Square Error (MSE) assesses the
quality of a model and a good classifier is expected to have a
small MSE. Let θ be the predicted value, θ be the observed
value for n observations, then the MSE error can be defined as

��� = 1� ∑� = 1
� (��− ���) (23)

Figure 10. (a-d) represent the confusion matrices for algorithm 1
when we utilise the 40X, 100X, 200X and 400X datasets, respectively.

Figures 12a-12d illustrates the performance of the 40X, 100X,
200X and 400X datasets when we use Algorithm 1. Figures

13a-13d depicts the performance of the 40X, 100X, 200X and
400X datasets when we use Algorithm 2. Table 3 summarises
the MSE values and the required number of epochs to achieve
that value.

Figure 11. (a-d) represent the confusion matrices for algorithm-2
when we utilise the 40X, 100X, 200X and 400X datasets, respectively.

Table 3. MSE values and the corresponding epoch values.

Algorithm Magnification factor MSE Epoch

Algorithm-1 40X 0.14481 209

100X 0.16528 134

200X 0.18074 26

400X 0.13813 238

40X 0.09941 373

Algorithm-2 100X 0.09384 236

200X 0.09384 254

400X 0.09948 483

Table 3 and Figures 12 and 13 shows that, for Algorithm 1, the
best MSE values are achieved when we use the 400X
magnification factor, and it takes 209 epochs. However, when
we have recourse to Algorithm 1 and the 200X magnification
factor dataset the model requires 26 epochs to achieve an MSE
of 0.18074. Though it requires fewer epochs, it performs worse
than all the other datasets when we exploit Algorithm 1. When
we utilise Algorithm 2 almost all the datasets show the same
kind of MSE, which lies in between 0.09384 and 0.09948.
However, when we implement the 400X database it requires
483 epochs, which is larger than for the other three datasets.
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Figure 12. (a-d) represent the performance analysis for algorithm-1
when we utilise the 40X, 100X, 200X and 400X datasets, respectively.

Figure 13. (a-d) represent the performance analysis for algorithm-2
when we utilise the 40X, 100X, 200X and 400X datasets, respectively.

ROC curves: ROC curves show the false positive rate and true
positive rate performance. The best performance is achieved at
the top-most left position. That position indicates that the false
positive rate is 0 and the true positive rate is 1, which also

indicates that the true negative rate is 100.00%. Figures 14 and
15 show ROC curves for the Algorithms 1 and 2, respectively.

Figure 14. (a-d) represent the ROC curves for algorithm-1 when we
utilise the 40X, 100X, 200X and 400X datasets, respectively.

Figure 15. (a-d) represent the ROC curves for algorithm-2 when we
utilise the 40X, 100X, 200X and 400X datasets, respectively.
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So far, very little work has been done on classifying the
BreakHis dataset. Fabio et al. used the Local Binary Pattern
(LBP), Local Plane Quantization (LPQ), Gray-Level-Co-
occurrence Matrix (GLCM), Parameter Free Threshold
Adjacency Statistics (PFTAS) method for feature-extraction.
These authors applied four dierent classifiers: 1-Nearest
Neighbor (1- NN), Quadratic Linear Analysis (QDA), Support
Vector Machine (SVM) and Random Forest (RF). Overall they
achieved the best performance when they used the PFTAS
descriptor and SVM classifier, and their achieved performance
Accuracy was 85.1 ± 3.1%. As a descriptor, we use Tamura
features. Our proposed Algorithms 1 and 2 both use the RBM
method for image classification. When we use Algorithm 1, the
overall accuracy achieved is 82.20%, 74.70%, 69.00% and
81.70% for the 40X, 100X, 200X and 400X datasets,
respectively, while Algorithm 2 gave 88.70%, 85.30%, 88.60%
and 88.40% accuracy for the 40X, 100X, 200X and 400X
databases, respectively (Table 4).

Table 4. Comparison of results using our proposed algorithm and
other algorithms.

Descriptor Classifier Magnification factor and accuracy %

40X 100X 200X 400X

CLBP [34] SVM 77.4 ± 3.8 76.4 ± 4.5 70.2 ± 3.6 72.8 ± 4.9

GLCM [34] RF 73.6 ± 1.5 76.0 ± 1.9 82.4 ± 2.3 79.8 ± 2.5

LBP [34] SVM 74.2 ± 5.0 73.2 ± 3.5 71.3 ± 4.0 73.1 ± 5.7

LPQ [34] 1-NN 72.8 ± 4.9 71.1 ± 6.4 74.3 ± 6.3 71.4 ± 5.2

ORB [34] QDA 74.4 ± 1.7 66.5 ± 3.2 63.5 ± 2.7 63.5 ± 2.2

PFTAS [34] SVM 81.6 ± 3.0 79.9 ± 5.4 85.1 ± 3.1 82.3 ± 3.8

Algorithm 1 RBM 82.2 74.7 69.0 81.7

Algorithm 2 RBM 88.7 85.3 88.6 88.4

In [34] the performance has been evaluated through the
accuracy measure. However, in this chapter we have found the
ROC information and the error performances with the epoch.

Conclusion
In this chapter we have proposed an automatic BC image
classifier framework which has been constructed using state-
of-the art deep neural network techniques. Instead of using raw
images we have utilised Tamura features, as they provide
textural information. As a deep-learning tool we have
implemented an unsupervised restricted Boltzmann machine
which contains four layers and is guided by a supervised
backpropagation technique. For the back-propagation, scaled
conjugate gradient techniques have been utilised. We have
performed our experiments on the BreakHis dataset and
obtained 88.7%, 85.3%, 88.6% and 88.4% accuracy for the
dataset of 40X, 100X, 200X and 400X magnification factors,
respectively. Most of the experiments on the BreakHis dataset
judged the performance on the basis of accuracy; however, in
this chapter we have also considered TPR, FPR values along

with a detailed description of the ROC curves. The error
performance as a function of the epoch is also explained in
detail. This chapter shows that the RBN method is very eective
for automatic breast-cancer image diagnosis. However, in the
future the combination of CNN and RBM will enhance the
classification performance.
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