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Introduction
B Cell Functions

B cells are one of the two adaptive arms partnering with 
T cells in immune defense system against infections by 
virus, bacteria, fungi and parasites [1]. Originated from 
hematopoietic stem cells in bone marrow, B cells contain 
multiple subsets including antibody-secreting cells, 
antigen-presenting cells (APC), innate B effector cells 
and regulatory B cells [2]. As a heterogeneous population, 
B cells possess multidirectional immune functions. For 
instance, B cells can produce antigen-specific antibodies 
in response to infectious pathogens or sterile self-antigens 
[3]. B cells can also present pathogen-derived antigens to 
T cells during infections [4]. B effector cells can further 
produce a variety of immune-stimulatory cytokines such 
as IL-1, IL-6, IL-12 [5], Granulocyte-macrophage colony-
stimulating factor (GM-CSF) [6], augment immune 
response against infections or promote inflammation in 
autoimmune diseases [6,7]. In contrast, regulatory B cells 
secrete immune-suppressive cytokines including IL-10 and 
transforming growth factor-β (TGF-β) to attenuate pro-
inflammatory immune response [8]. Emerging evidences 
show that B cells also have anti-tumor function [9,10]. 
In preclinical animal model, B cells are required for the 
successful combined antibody-immunotherapy against 
murine mesotheliomas [11]. In patients with malignancies, 
B cells are also found to correlate with a significant 
increase of overall survival, and higher number of B cell 
infiltrates lead to better prognosis [12]. However, B cells 
in particular regulatory B cells can also act as immune-
suppressive cells and facilitate tumor immune escape 

[13,14]. The dual functional faces of B cells on tumors are 
likely due to the different B cell subpopulations, which 
have distinguished phenotypes and secretomes that either 
inhibit tumor growth or facilitate malignancy [9].

B Cells in Tumor Microenvironment

B cells as well as T cells, natural killer cells, monocytes 
and other immune cells can infiltrate into tumor 
microenvironment, distributing from the tumor margin 
to the tumor core. In patients with tongue squamous cell 
carcinoma, infiltrated B cells are commonly found in the 
carcinoma stroma with tumor-suppressive effect [12]. In 
pancreatic ductal adenocarcinoma, human B cells reside 
in tertiary lymphoid tissue with two distinct infiltrating 
patterns: scattered or organized [15,16]. High density of 
organized infiltrating B cells predicts longer survival for 
patients; highlighting B cells are essential effector cells in 
the tumor microenvironment of human pancreatic ductal 
adenocarcinoma [16]. In bladder cancer, human CD20+ B 
cells preferentially migrate into the lamina propria area, 
and have positive correlation with T cell infiltration [17]. 
Further analyses demonstrated that B cell infiltrates have 
no link with Foxp3 positive regulatory T cells in tumor 
microenvironment [17]. Moreover, tertiary lymphoid 
structures with aggregating B cells are associated with 
lung cancer prognosis [18]. In patients with gastric 
cancer, B cells abundantly infiltrate and aggregate in the 
gastric cancer stromal microenvironment, accompanied 
with infiltrated T-bet+ T cells to form a tertiary lymphoid 
structure surrounding the tumor [19]. Tumor-associated B 
cells in gastric cancer microenvironment are proliferating 
and express Ki67. Importantly, infiltrated B cell number 
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is positively linked to relapse-free survival, and B-cell 
gene expression is significantly connected with improved 
outcome [19]. It is found that tumor-infiltrating B 
cells have beneficial effects on prognosis in patients 
with tongue squamous cell carcinoma [12], pancreatic 
adenocarcinoma [16], gastric cancer [19], cutaneous 
melanoma [20,21], breast cancer [22], ovarian cancer [23] 
and colorectal cancer [24]. However, the mechanisms by 
which B cells accumulate in the tumor microenvironment 
and result in better prognosis are not fully understood. 
One explanation is that tumor-infiltrating B cells 
express antigen-presentation molecules and function as 
professional APC to orchestrate T cell-mediated anti-
cancer immunity [25,26]. Another reason could be that 
infiltrated B cells have potent capacity to produce anti-
tumor antigen-specific antibodies, since CD138+ and 
immunoglobulin kappa C-positive plasma cells have 
positive impact on anti-tumor immunity and are related to 
favorable prognosis in cancer patients [24,27]. MUC1 (The 
polymorphic epithelial mucin) is one of the most specific 
tumor-associated antigens in human cancers [24,28]. 
Anti-MUC1 IgG antibodies but not IgM in patients are 
significantly related to better prognosis [22]. Consistently, 
high density of plasma cells was found surrounding 
the tertiary lymphoid structures and correlated to T cell 
cytotoxicity [29]. Infiltrating B cells can also undergo 
somatic mutation, clonal expansion, intraclonal variation 
and isotype switching, eliciting humoral immunity against 
tumors [30,31]. Collectively, the preclinical and clinical 
investigations strongly support the notion that B cell 
infiltrates in the tumor microenvironment not only serve as 
a valuable predictive biomarker, but also play a profound 
protective role in anti-tumor immunity [32-35].

Cancer Immunotherapy

During the last decade, great progress has been made on 
cancer immunotherapy including dendritic cell-based 
cell immunotherapy [36], chimeric antigen receptor 
(CAR)-T cell [37,38] and immune checkpoint blockade 
including CTLA-4 (Cytotoxic T-lymphocyte-associated 
protein 4) or PD-1 (Programmed cell death protein 1)/
PD-L1 (Programmed death-ligand 1) inhibitors [39-41]. 
Dendritic cells as the most professional APC possess the 
capability to orchestrate innate and adaptive cellular and 
humoral immune responses against cancer cells. Cancer-
antigen loaded or bioengineered dendritic cells that 
expressing tumor antigens have been utilized as cancer 
vaccines for cancer patients [42]. However dendritic cells 
as a tumor vaccine in clinical trials are not as effective 
as in preclinical animal tumor models, with the limitation 
of high-cost, small number and short life (2-3 days after 
maturation) of dendritic cells generated from peripheral 
blood monocytes. CAR-T cells have been successfully 
used to treat B-cell malignancies by targeting CD19, CD20, 
CD22, CD30, CD33, CD123, CD133, CD138, ROR1, κ 
light chain and B-cell maturation antigen [43]. The killing 
of normal B cells besides malignant B cells by CAR-T 

cells and its serious treatment-related toxicities remains a 
challenge [44]. Current clinical trials reveal that CAR-T 
therapy have very limited efficacy on nonhematological 
solid tumors. Expression of regulatory molecules such as 
CTLA-4 and PD-1 on cytotoxic T cells has been shown to 
suppress the anti-tumor functions of T cells. Thus immune 
checkpoint blockade using antagonistic antibodies against 
the negative regulators can overcome cancer immune 
resistance and demonstrates promising therapeutic 
efficacy [45-47]. However, clinical trials showed that only 
partial cancer patients respond to immune checkpoint 
blockade [48,49]. B cells have multiple functions as 
antibody-producing cells; antigen-presenting cells, 
immune effector cells, and are required for adaptive T cell 
immune responses against tumors [50]. B cells also have 
an advantage to be easily expanded ex vivo in comparison 
with dendritic cells. Moreover, activated B cells can 
effectively present tumor lysate, antigen peptide or antigen 
cDNA and induce antigen-specific T cell immunoreaction 
against tumors [51]. Thus, B cells represent a promising 
approach for cancer immunotherapy, complementing the 
use of dendritic cells.

B Cell Based Approaches for Cancer Immunotherapy

B cells have been widely explored as a cellular adjuvant 
for cancer immunotherapy due to its immune-stimulatory 
activities. As antigen-presenting cells, B cells express 
CD40 and ligation with CD40 ligand on B cells robustly 
enhances the expression of co-stimulatory molecules 
CD80 and CD86 [52]. Consequently, CD40-activated B 
cells have potent capability to promote naïve and memory 
T activation and expansion and induce cytotoxic T cells 
immunity [53]. When pulsed with a melanoma antigen, 
CD40-activated B cells efficiently propel the generation 
of melanoma-specific T cells in vitro [54]. CD40-activated 
B cells also express adhesion molecules and chemokine 
receptors facilitating the cells to migrate into the secondary 
lymphoid organs, attract and interact with antigen-specific 
T cells [52-55]. CD40-activated B cells also function 
similarly to plasma cells and produce IgG [52]. In vivo, 
CD40-activated B cells have protective effect on various 
tumor models [56,57], with little toxicity to the mice [56]. 
Alternatively, CD40-ligated B cells loaded with tumor-
specific RNA as a cancer vaccine induce tumor-specific 
cytotoxic T cell immune response, inhibit the growth of 
non-Hodgkin’s lymphoma and improve overall survival in 
preclinical animal model [57]. It is interesting that leukemia 
B cells activated by CD40 ligation are also functionally 
similar to antigen-presenting cells and induce both IFN-γ+ 
CD4 and cytotoxic CD8 T cell proliferating and expansion 
[58]. Those data together inform that CD40-activated B 
cells have the potential to serve as a potent cellular agent 
for cancer immunotherapy.

Tumor-infiltrated B cells provide another approach for 
B cell cancer immunotherapy. B cells infiltrated into 
tumor stroma function as both antigen-presenting cells 
and tumor antigen-specific antibody-producing cells, 
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and play essential roles in anti-tumor immunity [34,59]. 
A Epstein-Barr virus immortalization in vitro assay 
demonstrates that primary colorectal carcinoma harbor 
infiltrated B cells that are consistent of CD23+CD80+ 
activated antigen-presenting cells and IgG-secreting cells. 
Those infiltrated B cells not only produce functional 
carcinoma-specific antibodies [59], but are also associated 
with cytolytic T cell response and superior prognosis in 
cancers [21,22,24,29]. Adoptive transfer of tumor-derived 
B cells further promotes anti-tumor T cell immunity and 
leads to tumor regression in preclinical breast cancer and 
pulmonary metastatic tumor animal models [60,61]. The 
anti-tumor property of tumor-primed B cells suggests that 
ex vivo expanded tumor-primed B cells could be utilized 
as potent T helper cells for cancer immunotherapy. B 
cells loaded with tumor-derived autophagosomes have 
the ability to present tumor-specific antigens selectively 
captured by autophagosomes and induce robust anti-tumor 
T cell response as well as antibody-mediated humoral 
response [62]. Administration of tumor-antigen loaded B 
cells as a vaccine further prevents the growth of tumors 
in mice [62], indicating that B cells activated by tumor-
derived autophagosomes represent a new strategy for 
cancer immunotherapy.  

Recently, we have developed an immune-stimulatory 
fusion cytokine (Fusokine) named GIFT4 (Figure 1), 
which is a granulocyte macrophage colony-stimulating 
factor (GM-CSF) and common γ-chain Interleukins 4 (IL-
4) fusion transgene [63]. In comparison with its parental 
cytokines, GIFT4 fusokine gains new function distinct 
from its parental cytokines GM-CSF and IL-4. GIFT4 has 
potent capability to activate and program naive B cells into 
immune effector cells. Programming of naïve B cells by 
GIFT4 fusokine involves both GM-CSF and IL-4 domains 
through a synergistic recruitment of GM-CSF receptor 
and IL-4 receptor clustered on B cell surface, which 
further triggers the formation of downstream signaling 
complex of JAK1 (The Janus kinase 1), 2, 3 and STAT1 
(The signal transducer and activator of transcription 1), 3, 
5 and 6 [63]. Inhibition of JAK signaling by its specific 
inhibitors completely interrupted GIFT4-induced STAT1, 
STAT3, STAT5 and STAT6 signaling in the treated B cells 

and consequent B cell expansion. In contrast, combined 
use of parental cytokines GM-CSF and IL-4 is unable to 
cluster the two receptors on B cell surface and induce B 
cell proliferation.

Interesting, GIFT4 protein has no effect on monocytes, 
although GM-CSF and IL-4 together have the capability 
to promote monocytes differentiation into dendritic 
cells. GIFT4-augmented B cells (GIFT4-B cells) express 
co-stimulatory molecules CD40, CD80 and CD86, 
and produce unique immune-stimulatory cytokines, 
chemokines and adhesion molecules including IL-1α, 
IL-6, IL-12, GM-CSF, CCL3, CCL4 and CD54, but 
little IL-10 and IFN-γ [63], apart from CD40-activated B 
cells [52] or innate response activator B cells [6]. With 
those immune properties, GIFT4-B cells function as 
APC-like effector cells, and consequently promote the 
expansion of CD314+, granzyme B-, granulysin- and IFN- 
-producing cytotoxic T cells that selectively kill 
human melanoma cells both in vitro and in vivo [63]. 
Moreover, GIFT4 fusokine induces B cell-dependent 
anti-tumor immunity in murine melanoma models [63], 
involving both APC-like B effector cells and GM-CSF-
producing innate response activator B-cells [6,63]. In our 
investigation of GIFT4 as a potential vaccine adjuvant, 
we also discovered that GIFT4-coated virus-like particles 
enhance anti-HIV antigen-specific antibody production 
in vivo [64], suggesting additional effect of GIFT4 on 
the antibody-secreting cells. Indeed, we have found 
that administration of GIFT4 protein induces robust 
anti-melanoma specific-antibody production in murine 
melanoma model (Unpublished data). We have further 
extended our investigation to human chronic lymphocytic 
leukemic (CLL) B cells, and examined the immune 
activity of GIFT4-stimulated CLL B cells (GIFT4-CLL 
cells). Unlike CD40-activated CLL cells [58], TLR9 
ligand-treated CLL cells [65] or normal GIFT4-B cells 
[63], GIFT4-CLL cells produce immune-stimulatory 
cytokines including IL-1β, IL-2, IL-6, IL-8, ICAM-1 and 
prime autologous T cells to proliferate, express tumor-
killing molecules IFN-γ, CD314, perforin and granzyme 
B, and lyse autologous primary leukemic cells [66]. Taken 
together, GIFT4 induces broad anti-tumor B cell immune 

GM-CSF IL-4 

GM-CSF IL-4N C MWLQSLLLLGTVACSISAPARSPSPSTQPWEHV
NAIQEARRLLNLSRDTAAEMNETVEVISEMFDLQ
EPTCLQTRLELYKQGLRGSLTKLKGPLTMMASH
YKQHCPPTPETSCATQTITFESFKENLKDFLLVIP
FDCWEPVQESMGLTSQLLPPLFFLLACAGNFVH
GHKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAA
SKNTTEKETFCRAATVLRQFYSHHEKDTRCLGA
TAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPV
KEANQSTLENFLERLKTIMREKYSKCSS 
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Figure 1. Structure of GIFT4 protein. (A) GIFT4 protein structure that contains GM-CSF and IL-4 domains. (B) Amino acids of 
human GIFT4
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responses either through GIFT4-programmed B effector 
cells that further prime tumor-killing cytotoxic T cell 
response, or through the augmentation of tumor-specific 
antibody production. Those results provide a strong basis 
for the potential utilization of GIFT4 fusokine and GIFT4-
augmented B cells as well as GIFT4-converted CLL cells 
for cancer immunotherapy in human. 

Conclusion
B cells play pivotal roles in immune defense system, which 
bridge the innate and the adaptive immunities against 
cancers. Augmented B cells including GIFT4-B cells and 
expanded tumor-infiltrated B cells have potent immune-
stimulatory activities and anti-tumor function by either 
priming cytotoxic T cell response or producing anti-tumor 
specific antibodies. We predict that GIFT4 and GIFT4-
augmented B cells as potential immune therapeutics could 
provide a new approach for cancer immunotherapy.
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