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Introduction
One of the most common malignant tumors, lung cancer 
affects millions of people worldwide. It is the leading 
global cause of cancer death in both men and women [1]. 
Small Cell Cancer (SCLC) and Non-Small Cell Cancer 
(NSCLC), which together account for 85% of all lung 
malignancies, are the two primary histological forms 

of the disease [2]. According to breast cancer (11.6%), 
prostate cancer (7.1%), and colorectal cancer (6.1%), lung 
cancer is the most often diagnosed cancer (11.6% of all 
cases) and the leading cause of cancer death (18.4% of 
all cancer-related fatalities) [3]. Lung cancer is the most 
prevalent condition in men and the one that results in the 
most cancer-related fatalities. The rise in death rates over 
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the past few decades has been linked to delayed diagnosis, 
which restricts treatment options and highlights the critical 
lack of biomarkers for the creation of targeted therapies 
for the disease [4].

One of the most prevalent illnesses among children is 
asthma. Asthma's primary symptom is chronic lung 
inflammation, which manifests as airway hyper-reactivity, 
excessive mucus production, and breathing obstruction. 
Chronic inflammation has a significant role in the 
emergence of cancer [5]. As a result, asthmatic persistent 
inflammation may promote the growth of lung cancer. 
According to some earlier research, lung cancer risk and 
asthma are significantly related [6-23].

In terms of disease burden, COPD ranked fifth globally 
[24] and was the third most prevalent cause of death 
globally in 2010 [25]. COPD is a progressive, ultimately 
deadly decline in lung capacity. Up to 50% of smokers may 
experience a significant decline in quality of life due to 
COPD [26]. Exogenous and endogenous oxidative stress, 
inflammatory cytokine release, protease activity (owing to 
the protease: Anti-protease imbalance), and autoantibody 
production all contribute to lung injury in COPD [27]. 
Airway damage, air entrapment, and lung hyperinflation 
can all result from these. There is evidence that lung cancer 
and COPD share a same etiology, and smoking is the main 
contributor. COPD is a separate risk factor for lung cancer, 
specifically squamous cell carcinoma [28], and smokers 
with airflow restriction are up to five times more likely 
to develop lung cancer than those with adequate lung 
function [29]. The high incidence of lung cancer in COPD 
raises the possibility of shared processes, including early 
aging of the lungs, hereditary susceptibility to illness, 
or shared pathogenic agents, including growth factors, 
activation of intracellular pathways, or epigenetics [30].

The main airways of the lungs (bronchi) are affected by 
the infectious condition known as bronchitis. Most cases 
of bronchitis occur when an infection irritates and inflames 
the airways, causing them to generate more mucus than 
usual. After taking into account smoking and other 
respiratory conditions, chronic bronchitis and emphysema 
were found to be strongly related with lung cancer [31]. 
Instead of being an infrequent risk, chronic bronchitis may 
play a significant role in the development of lung cancer. 

The SARS-CoV-2 virus is the infectious disease known 
as COVID-19. One of the most significant public health 
issues currently affecting our society is the recent COVID 
outbreak, which has caused more than 5,879,215 fatalities 
worldwide and incalculable economic harm. The World 
Health Organization classified COVID-19 to be a global 
pandemic on March 12, 2020, as the epidemic condition 
grew worse. In fact, a number of clinically significant 
prognostic factors, including advancing age, male gender, 
and smoking status, were linked to an increased 30-
day all-cause mortality of COVID-19 (former smoker). 
Retrospective investigation proved that cancer patients in 

the outbreak city were 2.31 times more likely to contract 
a new coronavirus infection than the general population. 
Additionally, after COVID-19 infection, those with tumors 
or other problems had a worse prognosis than the general 
population [32].

Genomic studies provide the knowledge needed to 
identify all transcriptionally deregulated gene groupings. 
When comparing tumoral and healthy tissue, DEGs from 
microarrays and RNA-Seq have the capacity to participate 
in the control of biological activities and signaling 
networks, explaining expression patterns linked to tumor 
grade and patient survival [33-35]. According to our 
research team, a combined bioinformatics analysis of a 
particular subset of these studies can make use of all the 
transcriptomic knowledge produced by these technologies, 
uncovering potentially useful data that could be used to 
improve understanding of cellular processes connected 
to complex diseases like cancer. The deregulated genes 
were discovered in order to understand the intricacy of 
lung cancer on a worldwide scale. Additionally, when 
comparing various pathologies using a global analysis of 
numerous databases, we are able to identify particularities 
and shared processes that are impossible to identify when 
studying each study independently. In this study, we talk 
about how lung disease genetics affect lung cancer.

Materials and Methods
Overview of this study

This study evaluates the comorbidity interaction of 
Differentially Expressed Gene (DEGs) datasets using a 
quantitative systematic approach. In this strategy, gene 
expression analytics are combined with data on protein-
protein interactions, disease-gene connections, signal 
pathway information, Gene Ontology (GO) data, and gene 
expression analytics that are validated using these sources. 
In this research, the common elements to the comorbidities 
of putative pathways are found, along with the pathways' 
known pathogenic potential.

Microarray data collection and processing

We first examined gene expression microarray datasets to 
look at shared molecular routes to lung cancer with asthma, 
bronchitis, COPD, and COVID. Data on transcriptomes was 
gathered from the NCBI-GEO database, which is openly 
accessible [36]. Users can obtain the gene expression 
profiles kept in GEO using the datasets from numerous 
experiments that have been deposited in this database. 
Using specialized libraries from the R/Bioconductor 
language [37], six microarray datasets (GSE33532 and 
GSE99316 for lung cancer, and GSE143303 for asthma, 
GSE74163 for bronchitis, GSE133096 for COPD, and 
GSE163529 for COVID) were collected and compared 
to normal and disease-related lung tissue in order to find 
Differentiated Expressed Genes (DEGs) shared by lung 
pathologies and lung cancer as well. Then, the DEGs 
between the case and control samples were determined 
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matrix degree were chosen.

Cross-validation and performance assessment of 
reported biomolecules

In the SurvExpress web server, patients were initially 
split into low-risk and high-risk groups [45]. Then, using 
box plots and survival probability curves, the differences 
between the risk groups based on the hub-DEG expression 
levels were examined. The t-test was used to assess the 
statistical significance of the differences in the box plots. 
Kaplan-Meier plots were used to assess the survival 
patterns of the reported biomolecules, and all survival 
studies required a log-rank P<0.01 to be considered 
statistically significant.

Results
Common DEGs between lung cancer and other lung 
diseases

Using Limma, DEGs were examined in the microarray 
datasets and chosen from comparisons between the 
disease and control (Bioconductor packages). The R 
Bioconductor tools statistically assessed the DEGs 
that were discovered for each dataset. There were 356 
DEGs found for lung cancer, 1035 for asthma, 287 for 
bronchitis, 1276 for COPD, and 34 for COVID datasets, 
respectively. In order to find the relevant genes that are 
shared by Lung Cancer (LC) and other lung illnesses, we 
also ran comparison analysis. Asthma, bronchitis, COPD, 
and COVID diseases, respectively, share 38, 9, 9, and 12 
significantly down-regulated genes and 32, 9, 9, and 1 
significantly up-regulated gene with LC. We built an up-
and down-regulation illness interaction network focused 
on lung cancer where four diseases are comorbid in order 
to find statistically significant relationships between lung 
cancer and the other ailments (Figure 1A and 1B).

Common functional enrichment analysis in lung cancer 
and other lung diseases 

The investigation of the functional annotation of DEGs 
was conducted using the DAVID v6.8 web server. 
Approximating Biological Process (BP), Molecular 
Functions (MF), and Cellular Component (CC) terms 
were used to find the probable Gene Ontology (GO) 
classification. Signaling pathways are discussed in KEGG 
pathway enrichment terms. The adjusted P-value (adj 
P-value) ≤ 0.05 and FDR<0.05 are considered strongly 
enriched and result are presented in bubble plot (Figures 
2 and 3). The Gene Ontology BP study demonstrated the 
important involvement of DEGs in transcription from 
RNA polymerase II promoter regulation of transcription, 
including positive regulation of transcription and negative 
regulation of transcription. We discovered using MF 
analysis that the DEGs from the complex network were 
enriched in RNA polymerase II transcription factor activity 
sequence-specific DNA binding, DNA binding, and RNA 
polymerase II core promoter proximal region sequence-
specific DNA binding. In CC, the chromatin network was 

using the LIMMA statistical test [37]. The P-values were 
modified using Benjamini Hochberg's approach in order to 
regulate the multiple-testing false discovery rate [38]. The 
adjusted P-value and log2FC values were both taken into 
account when determining which DEGs were upregulated 
and downregulated. Upregulated DEGs, if adjusted 
P<0.001 and log2 FC>1 and downregulated DEGs, if 
adjusted P<0.001 and log2 FC<-1.

Enrichment analysis by DAVID

For the investigation of KEGG pathway enrichment 
and functional annotation of GO, we employed the 
web-based DAVID v6.8 program [39]. DAVID is a key 
resource for functional evaluation of high throughput 
gene expression patterns. In order to observe the DEGs 
involved in the GO keywords and pathways we effectively 
utilized, integrative analysis using the DAVID software. 
Analysis of the initial GEO2R DEGs revealed shared 
DEGs between lung cancer and other lung disorders. The 
study also analyzes molecular function, biological process 
and cellular component of GO enrichment analysis. This 
analysis was conducted by common DEGs, and P<0.05 
were considered to be significant.

Protein-protein interaction network analysis of DEGs

The Protein-protein Interaction (PPI) network of the 
proteins expressed by DEGs was built using the STRING 
database [40]. A score combiner based on the product 
of probabilities is used by the STRING database [41]. 
Network analyst [42] was used to visualize and carry out 
topological analysis on the PPI network. Through the 
CytoHubba plugin [43] in Cytoscape 3.8.2, the topological 
analysis was used to identify hub-DEGs/proteins while 
taking both degree (connectivity) and betweenness metrics 
into account. In CytoHubba, a minimum degree of 10 was 
regarded as the cutoff threshold.

Mutation analysis

To evaluate the mutation or genomic alteration of 
hub DEGs, the online SRplot database (https://www.
bioinformatics.com.cn/plot_basic_maf_summary_
plot_134_en ) was used. A TCGA-defined file format 
called Mutation Annotation Format (MAF) is used to 
contain information about mutation annotation. It provides 
SNV and annotation information for all samples, making 
it simple for downstream analysis. MAF is a particular file 
format for the human species. The output of this analysis 
displayed the most significant mutation or genomic 
alteration of hub DEGs.

DEG-TF interaction network analysis

We looked into the network of interactions between 
Transcription Factors (TFs), DEGs, and miRNAs in order 
to uncover the transcriptional regulatory components 
of these DEGs by using the publicly available miRNet 
database [44]. As the regulators of the discovered DEGs, 
the top TFs and miRNAs with the highest topological 
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active. We used KEGG data enrichment for lung cancer 
and other lung illnesses to determine the pathways. After 
combining transcriptome and proteome studies, we carried 
out a regulation study to learn more about the pathways 
connected to these frequently occurring DEGs. The KEGG 
analysis showed that DEGs that are considerably enriched 
are involved in the Wnt signaling pathway, Proteoglycans 
in cancer, Pathways in cancer, Tuberculosis, and cAMP 
signaling pathway.

Identification of hub DEGs of lung cancer in common 
with other lung diseases

Hub genes are important for signal transduction 
activities that occur as a disease progresses. Through 
physical interactions and topological analysis, a PPI sub-
network was built around the proteins expressed by the 
DEGs in order to identify these hub genes. The ten hub 
genes identified as a result are RHOA, CREB1, ACLY, 
HNRNPA2B1, AGO2, PSMA6, DNMT3A, CD44, 
BCL6 and MMP3 (Figure 4). Using rank of degree the 

connection between hub genes and nodes was calculated 
and red color nodes are highly connected. RHOA has the 
highest degree score (218), followed by PSMA6, BCL6, 
AGO2, HNRNPA2, and CREB1 (Table 1). Figure 5A heat 
map illustrated the association between hub genes and 
diseases in terms of the adj P-value, whereas Figure 5B 
heat map illustrates the association between hub genes 
and diseases in terms of the values of log fold change in 
the SRplot database. By analysis this study, lung cancer 
dataset shares more DEGs with asthma compared to the 
other three diseases (bronchitis, COPD and COVID). The 
DEGs that are common between lung cancer and asthma 
include RHOA, CREB1, ACLY, HNRNPA2, AGO2 and 
PSMA6 (Figure 6). The MMP3 shared with bronchitis and 
lung cancer and DNMT3A is a common DEG between 
COPD and lung cancer (Figure 6). Two DEGs share with 
COVID and lung cancer include CD44 and BCL6 (Figure 6). 

Mutation analysis of hub genes

Figure 2. Enrichment gene ontology bubble plot between the lung cancer and other lung diseases. The gene ontology discovered 
using the common DEGs for each of the condition and the combined genes of lung cancer and other lung diseases.

Figure 1. Identification of DEGs and common DEGs of Lung Cancer (LC) and Bronchitis, COVID, COPD and Asthma; A) Common 
DEGs with increased transcript levels and B) Common DEGs with decreased transcript levels. Significant DEGs is indicated blue 
circles, with connecting lines linking the datasets undergoing comparison.

(A) (B)
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Figure 3. Enrichment KEGG Pathway bubble plot between the lung cancer and other lung diseases discovered using the common 
DEGs for each of the condition and the combined genes of lung cancer and other lung diseases.

Figure 4. Hub proteins were obtained from protein-protein interaction networks of the DEGs in lung cancer and other lung diseases. 
Here, larger size red colors represent the hub proteins and larger size indicates the higher degree. The nodes indicate the DEGs and 
the edges indicate the interactions between two genes. 
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Figure 6. References for lung cancer and other lung diseases of hub genes. The first column represent references for different lung 
diseases whereas brown color indicate asthma, blue color indicate COPD, grey color indicate COVID and orange color indicate 
bronchitis. Third column indicate different articles for lung cancer and the second column indicated the hub genes [46-65].

Figure 5. Heatmaps show the relationships among DEGs and diseases based on (A) adjusted P value and (B) log fold-change for the 
lung cancer and other lung diseases.

(A) (B)

Table 1. Top ten hub genes network from protein-protein interaction string database ranked by degree method. 

Rank Gene name Score Log FC Adjusted P-value
1 RHOA 218 -0.4477457 4.59E-09
2 PSMA6 66 0.6102423 7.42E-07
3 BCL6 52 -1.2212194 2.35E-23
4 AGO2 44 1.1021344 3.00E-06
4 HNRNPA2B1 44 0.179547 1.21E-02
4 CREB1 44 0.2207258 1.52E-02
5 CD44 40 -0.43077 2.27E-02
6 DNMT3A 25 0.9477237 5.13E-13
7 MMP3 15 2.11972 2.64E-06
8 ACLY 6 0.446152 2.81E-05
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Cross-validation and risk discrimination performance of 
hub proteins

A separate RNA-seq dataset collected from TCGA was 
used to confirm the differential expression signatures, and 
the effectiveness of 10 hub proteins in risk discrimination 
was assesseds. The risk discrimination performance and the 
differential expression pattern were noticed by the online 
gene validation website SurvExpress. Depending on how 
well they could identify between low-risk and high-risk 
situations, the samples were split into two groups based 
on expression levels, and these groups were given the 
names low-risk and high-risk. Nine genes were accessible 
in the TCGA Lung Squamous Cell Carcinoma Survival 
Information Database following the hub gene upload, but 
AGO2 was not. The box plot of their gene expressions and 
the survival curves for the high-risk and low-risk groups 
are shown in (Figure 9A and 9B). For both investigations, 
the prognostic index, log-rank test, and hazard ratio are 
shown.

Mutation analysis or genomic alteration of 10 hub genes 
disclose that DNMT3A, AGO2, BCL6, HARNPA2B1, 
CD44 and MMP3 genes had 28%, 17%, 13%, 12%, 12% 
and 8% mutation over the lung cancer studies. Other hub 
genes had low rate mutation in lung cancer. Maximum 
genomic alteration are happened due to missense mutation. 
Details of the genomic alteration of hub genes are present 
in Figure 7. 

Transcriptional and post-transcriptional regulators 
analysis 

We examined the TFs-DEGs and miRNAs-DEGs 
networks in miRNet to find the DEGs' transcriptional 
and posttranscriptional regulators (Figure 8). The TFs 
(CREBBP, SP1, JUN, and HDAC1) and miRNAs (has-
mir-20a-5p, has-mir-155-5p, has-mir-34a-5p, and has-mir-
16-5p) were shown to be the key regulators of the DEGs 
that were identified as shared by lung cancer and other 
lung disorders by statistical analysis of the topological 
parameters.

Figure 7. Genetic alteration or mutation of hub DEGs. 
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Figure 8. Differentially expressed genes-transcription factors-miRNA interaction network analysis. The experimentally verified 
interaction data were obtained from miRNet database. Here, red color indicates DEGs, green color indicates TFs and blue color 
indicates miRNA. Larger size indicates key regulators.

Figure 9. The multivariate survival curves of lung cancer patients based on hub genes (A) the risk group discrimination performance 
by the multivariate survival probability curves and (B) box plot based on gene expression by risk group of hub-DEGs.

and quality can also be enhanced over time as new, sizable 
gene expression datasets related to diseases become 
available. The significant biomarker profiles have been 
linked to a higher risk of getting cancer [66]. Our disease 
network identified a number of shared genes between 
lung cancer and other diseases using a combined study of 
transcriptome, genomic, PPI, pathway, and GO data.

This study focuses on identifying potential paths of 
communication between lung cancer and other lung 
disorders. First, we determined which genes from each 
dataset had differential expression. Then, we contrasted 

Discussion
Our investigation will contribute to a better understanding 
of the potential influences that other lung conditions may 
have on the emergence of lung cancer. Instead of taking 
a purely mechanistic approach, we used a bioinformatics 
tool to hunt for genes that were dysregulated in lung cancer 
and other lung disorders. We then used this information to 
provide hints to find dysregulated pathways and control 
mechanisms. In this study, we examine the relationship 
between four lung diseases: Asthma, bronchitis, COPD, 
and COVID-19 and lung cancer. The analysis's potency 
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higher levels of PSMA6 mRNA [74]. 

Lung cancer risk may be independently increased by 
COPD. Lung cancer may be caused by lung oxidative 
stress, persistent exposure to pro-inflammatory cytokines, 
increased cellular proliferation, and suppression of 
DNA repair processes [75]. When it comes to lung 
adenocarcinoma, DNMT3A expression is a standalone 
prognostic indicator that is connected with the lepidic 
subtype and histologically non-invasive type. The clinical 
use of DNMT3A as a significant prognostic predictor is 
possible. This suggests that DNMT3A is a rate-limiting 
factor preventing inflammatory reactions since DNMT3A 
expressing T helper cells might employ the same method 
to prevent immunological overreaction.

Lung cancer and bronchitis share many of the same risk 
factors, genetic and epigenetic abnormalities, activation 
of related signaling pathways, and poor prognoses. 
Lung cancers have much higher MMP3 levels than non-
malignant lung tissue [76]. The association between one 
location of the 6A-G haplotype analyzed by MMP3 (1171 
5A>6A) and chronic bronchitis [77]. 

Patients with lung cancer and hematological malignancies 
appear to be at the highest risk of dying from SARS-
CoV-2 infection. Lung cancer offers a clinical setting 
that is characterized by an increased risk of pulmonary 
complications, severe lung injury, and substantial 
COVID-19 mortality because of pathophysiological, 
clinical, and treatment-related risk factors. BCL6 was 
elevated in KRAS-mutant cancers, such as Non-Small-
Cell Lung Cancer (NSCLC), following BET inhibition 
[78]. Lack of germinal center formation and Bcl-6 
expression, which are both accompanied by elevated 
TNF-alpha production in secondary lymphoid organs, 
may compromise the humeral response to SARS-CoV-2 
[63]. High levels of CD44 expression may hasten the 
development of NSCLC by boosting the proliferation 
of cancer cells [79]. Ten hub genes validated by using 
previous bibliography that these genes are responsible for 
lung cancer and other lung diseases (Figure 6). 

Genomic alteration or mutation of hub DEGs shows that 
DNMT3A and AGO2 were mutated more than the other 
DEGs. Missense mutation is significantly associated with 
all genes mutation (Figure 7). 

Our results identified four TFs (CREBBP, SP1, JUN, and 
HDAC1) and four miRNAs (has-mir-20a-5p, has-mir-
155-5p, has-mir-34a-5p, and has-mir-16-5p) as a key 
biomolecule regulators (Figure 8). CREBBP depletion in 
SCLC decreases histone acetylation and cellular adhesion 
gene transcription while promoting carcinogenesis. In the 
absence of c-Jun, the protein ranges of the JunD family 
member have increased. JunD phosphorylation increased 
in c-Jun-deficient cells, and introduction of a dominant-
energetic JNKK2-JNK1 transgene also increased lung 
tumor development [80]. In vivo lung adenocarcinoma 
cell migration, invasion, and metastasis were all negatively 

the DEGs of the datasets for lung cancer and the four 
other lung conditions. There were 356 DEGs found for 
lung cancer, 1035 for asthma, 287 for bronchitis, 1276 for 
COPD, and 34 for COVID datasets respectively. In order 
to find the relevant genes that are shared by Lung Cancer 
(LC) and other lung illnesses, we also ran comparison 
analysis. Asthma, bronchitis, COPD, and COVID 
diseases, respectively, share 38, 9, 9, and 12 significantly 
down-regulated genes and 32, 9, 9, and 1 significantly up-
regulated genes with LC (Figure 1). Functional enrichment 
are involved in some cancer related pathways including Wnt 
signaling pathway, Proteoglycans in cancer, Pathways in cancer, 
Tuberculosis, and cAMP signaling pathway (Figure 3).

Caucasians and Asians both have a much higher risk of 
lung cancer when they have asthma, and both males and 
female patients exhibit this increased risk [67]. Although 
smoking is known to raise the risk of lung cancer, asthma 
patients who do not smoke also have an elevated risk 
of lung cancer [68]. These findings suggested that lung 
cancer and asthma may both be at risk. Lung cancer may 
have long-term lung inflammation caused by asthma as a 
contributing factor. We discovered 70 DEGs between lung 
cancer and asthma in this study. Next, we found ten hub 
genes (Figure 4), of which six DEGs (RHOA, CREB1, 
ACLY, HNRNPA2, AGO2, and PSMA6) had a substantial 
association with both lung cancer and asthma (Figure 5). 
After an initial but temporary dysregulation of CREB1 
and CRTC-mediated transcription is either directly or 
indirectly acceptable to influence long-term modifications 
of downstream targets in asthma, down-regulated CREB1 
was profoundly affected in early primary human bronchial 
epithelial cells [69]. Effective biomarkers for the diagnosis 
and prognosis of non-smokers with lung cancer include 
CREB1 [70]. According to the MTS tetrazolium assay, flow 
cytometry analysis, and western blotting, the inhibition of 
RhoA expression significantly reduced the proliferation of 
lung cancer cells while significantly increasing apoptosis 
(P<0.01). Additionally, the knockdown of RhoA results 
in significantly lower levels of phosphorylated signal 
transducer and activator of transcription (phospho-STAT3; 
P<0.01) and significantly higher levels of caspase-3 
(P<0.01) in the cells [71]. Patients with asthma have 
higher levels of RhoA/Rhokinase activation, which is 
strongly correlated with airway hyper responsiveness and 
other important characteristics of asthma, such as airway 
remodeling, allergic airway inflammation, and malfunction 
of the airway barrier [72]. Human lung cancer samples 
were found to have much greater levels of phosphorylated 
ACLY overexpression than did normal lung tissue [73]. 
AGO2 deletion slows the growth of tumors, reduces 
their pathologic severity, and blocks KRAS signaling. 
Future therapeutic advancements in treating NSCLC 
and other KRAS-driven cancers may involve focusing 
on the AGO2-KRAS interaction. Comparing a panel of 
normal and lung cancer cell lines' putative proteasome 
subunit genes' expression analysis and gene copy number 
analysis, PSMA6 copy number expressed considerably 
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impacted by Sp1. Due to Sp1's inherent instability, low 
Sp1 levels were also seen in highly invasive cancer 
cells [81]. One important epigenetic component that 
has been connected to the development and prognosis 
of various cancers is Histone Deacetylase 1 (HDAC1). 
HDAC1 expression was strongly correlated with the lung 
cancer differentiation grade, suggesting that it may be an 
important factor in this process [82].

Using multivariate survival probability curves and 
boxplots, the reported biomolecules' prognostic ability to 
distinguish between high-risk and low-risk scenarios were 
demonstrated (Figure 9). The described biomolecules 
certainly played a significant effect in patient survival, 
as seen by the survival curves. The molecular candidate's 
gene expression data box plot also clearly distinguished 
between the high-risk and low-risk groups.

Conclusion
Our research has uncovered and verified similar cell 
pathways and regulatory biomolecules that could play a 
role in the association between lung cancer and other lung 
conditions. RHOA, CREB1, ACLY, AGO2, DNMT3A, 
CD44, BCL6, MMP3, PSMA6, and HNRNPA2B1 are just 
a few of the strong candidate genes in common pathways 
that are linked to the recovery of tumoral features in lung 
cancer and other lung disorders. Numerous TFs (CREBBP, 
SP1, JUN, and HDAC1) and miRNAs (has-mir-20a-5p, 
has-mir-155-5p, has-mir-34a-5p and has-mir-16-5p) were 
identified through the analysis of the DEG-TF network 
and DEG-miRNA interactions network. As a result, the 
disease interaction processes can be better understood due 
to our data-driven methodologies. Lung diseases have a 
significant genetic influence on the lung cancer.
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