Genetic and endrocrionological health risks of polycystic ovarian syndrome

Rabih Roufayel¹*, Rabih Mezher¹, Ghiwa Alkaakour², Rihan Abdallah², Rayan Abousaleh²

¹College of Engineering and Technology, American University of the Middle East, Kuwait ²College of Science, Beirut Arab University, Lebanon

Abstract

Polycystic Ovarian Syndrome (PCOS) is a common endocrine disorder predominantly affecting women hormone levels during their childbearing years Clinical symptoms are diverse can be accompanied by hyperandrogenism, irregular/anovulation, infertility, weight gain, oily skin and increased metabolic risk diseases Data from PCOS patients were collected in order to evaluate the prevalence of this hormonal disorder and to assess several risk factors associated with it Moreover, our results revealed a significant altered relation with cortisol, LH and insulin hormones levels.

Keywords: PCOS, Prevalence, Hormone levels, Polycystic ovaries menstrual cycle, Infertility.

Accepted on October 14, 2021

Introduction

Polycystic Ovarian Syndrome (PCOS) is a common reproductive and endocrinologic disorder affecting more than 60%-70% of adult females of ages between 15 and 44 This heterogeneous disorder becomes more frequent in early reproductive stages, leading to multiple complications such as increased infertility risks, metabolic complications, depression, anxiety and endometrial cancer A patient diagnosed with PCOS has shown with at least 20 follicles per ovary with a size of 2-9 mm in diameter size [1-4]

PCOS can be described as enlarged bilateral ovaries with the development of avascular smooth, thickened capsule holding multiple cysts Various stages subcapsular follicles of atresia are present in the peripheral part of the ovary Characterized by dysfunctional ovulation, this heterogeneous disorder holds a biochemical hyperandrogenisim with a polycystic ovarian morphology leading to severe outcomes such as increased infertile risks, reduced pregnancy rates, epithelial cancer progression [5,6] The most evident feature of PCOS is hyperplasia of the theca stromal cells surrounding seized follicles This phenomenon is characterized by three main phenotypes and includes hyperandrogenism, polycystic ovaries, and ovulatory dysfunction [6-10] Metabolic complexities are another related issues associated with PCOS and include peripheral insulin resistance (present is 60%-80% of PCOS women), hyperinsulinemia, type 2 diabetes mellitus, increased body weight, physical inactivity, hirsutism, acne and anovulation The clinical outcomes of unresolved anovulation in PCOS women are severe and may result in infertility, abnormal vaginal and uterus bleeding, increased endometrial, breast cancer risks and cardiovascular diseases including elevated levels of increased triglyceride, reduced HDL and hypertension [11-14]

Our etiological understanding of the PCOS is currently incomplete Much evidence favors its relation with several predisposing and protective genetic variants suggesting more complex multigenic-associated inherited-key genes related to multiple a wide ranges of environmental factors At the ovarian level, insulin directly interacts with insulin growth factor type I receptors, stimulating the increase in abnormal ovarian steroidogenesis a consequence of inappropriate hypothalamicpituitary-ovarian interaction [15-17]

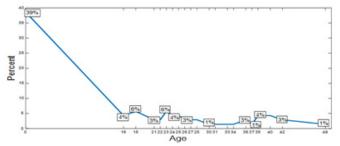
Disordered gonadotropin is also another feature of PCOS, which is characterized by the increased levels of LH secretion and decreased levels of FSH production, leading to an increased LH-FSH ratio received by the pituitary gland This persistent condition increases anovulation risks due to the neuroendocrine expression deficiency of elevated LH frequency levels and relatively reduced FSH [18,19]

Another metabolic hallmark present in PCOS women is the alteration of both cortisol levels and adrenal androgen production Upon the inhibition of the hepatic SHBG production, the ovarian androgen levels increase both directly and indirectly upon insulin resistance This increase is also associated with obesity with low rate pregnancy and elevated sympathetic nerve activity [20]

Based on the severity of the symptoms affecting ovaries and ovulation, PCOS syndrome can be divided into main three grades These grades are dependent on several main features that are related to cysts in ovaries, levels of male hormones and irregular or skipped periods in adolescent women Grade I (Arwen stein Leventhal) symptoms are mainly characterized by severe obesity, first occurrence of menstrual cycle after puberty, Cushing syndrome, high prolactin and abnormal facial hair production (hirsutism) Grade II symptoms are less severe and appear as mild hirsutism, mild obesity, amenorrhea and cushing syndrome Grade III level is less severe and can be summarized by normal female hormone levels, no loss of irregular menstrual cycle and no weight gain However, the symptoms are directed towards the development of multi-follicles in the ovaries [21,22]

The purpose of this study is to estimate the prevalence of PCOS in adolescent Lebanese women its correlation with hormonal levels and its prevalence on the basis of genetic and endocrinological factors

Data Collection


The data was collected over a period of two months from a well-reputable hospital in Beirut The study aimed to reveal the frequency of adolescent women having PCOS with the possible factors that play a role in influencing and affecting its occurrence The women understudy were around 16 to forty-nine years of age without disclosing any information of the patients due to medical and personal confidentiality

The variables chosen to be assessed and measured on the PCOS patients were based in several entities including the relation between the occurrence of the disease and some genetic and endocrinological factors These variables were of the following: age, DHEAS, grades of the disease, prolactin, TSH, insulin, testosterone, FSH, LH and cortisol hormones The data was entered into IBM SPSS Software to be organized and summarized in order to clearly analyze it and obtain a solid conclusion (Figures 1-10; Tables 1-10) [23]

Descriptive statistics

Table 1. Age of female participants 0 patients did not provide their age, and the ages of the female clients under study range between 16 and 49.

	N	Minimum	Maximum	Mean	Std Deviation
Age	67	0	49	1807	15201
	Frequency	Percent			
0	27	386			
16	3	43			
18	4	57			
21	2	29			
22	2	29			
23	4	57			
24	3	43			
25	3	43			
26	2	29			
27	2	29			
28	2	29			
30	1	14			
31	1	14			
33	1	14			
34	1	14			
36	2	29			
37	1	14			
38	3	43			
40	3	43			
42	2	29			
49	1	14			
Total	70	100			

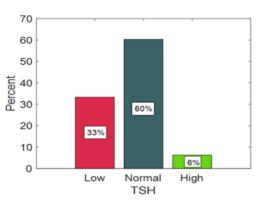


Figure 1. Age of female participants 0 patients did not provide their age, and the ages of the female clients under study range between 16 and 49.

TSH

Table 2. Variable TSH levels The highest percentage in the samples
under study showed 60% of TSH levels for normal, 33% for those
with low TSH and 6% with the highest TSH levels.

TSH	Frequency	Valid Percent %
Low	21	333
Normal	38	603
High	4	63
Total	63	100
Missing	7	
Total	70	

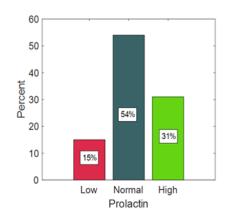


Figure 2. Variable TSH levels The highest percentage in the samples under study showed 60% of TSH levels for normal, 33% for those with low TSH and 6% with the highest TSH levels.

Prolactin

Table 3. Variable prolactin levels 53% of females had normal prolactin levels, 31% with high result and 15% with low prolactin result.

Prolactin	Frequency	Valid percent %
Low	10	149
Normal	36	537
High	21	313
Total	67	100
Missing	3	
Total	70	

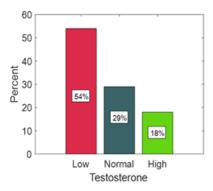


Figure 3. Variable prolactin levels 53% of females had normal prolactin levels, 31% with high result and 15% with low prolactin result.

Testosterone

Table 4. Measuring testosterone levels 54% expressed low testosterone levels, 29% expressed normal and 18% expressed high levels.

Testosterone	Frequency	Valid percent %
Low	30	536
Normal	16	286
High	10	179
Total	56	100
Missing	14	
Total	70	

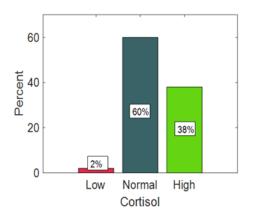


Figure 4. Measuring testosterone levels 54% expressed low testosterone levels, 29% expressed normal and 18% expressed high levels.

Cortisol

Table 5. Variable cortisol levels 60% had normal cortisol level, 38% with high, 2% with low.

Cortisol	Frequency	Valid percent %
Low	1	22
Normal	27	60
High	17	378
Total	45	100
Missing	25	
Total	70	

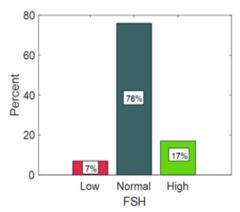


Figure 5. Variable cortisol levels 60% had normal cortisol level, 38% with high, 2% with low.

FSH

Table	6.	Various	FSH	results	of	selected	samples	76%	had	normal	
result,	17	% high,	7% la	ЭW.							

FSH	Frequency	Valid percent %
Low	2	69
Normal	22	759
High	5	172
Total	29	100
Missing	41	
Total	70	

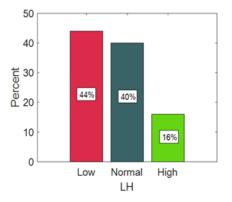


Figure 6. Various FSH results of selected samples 76% had normal result, 17% high, 7% low.

LH

Table 7. Measuring LH levels 40% had normal test, 44% with low and 16% with high levels.

LH	Frequency	Valid percent %
Low	11	44
Normal	10	40
High	4	16
Total	25	100
System	45	
Total	70	

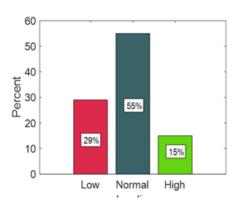


Figure 7. Measuring LH levels 40% had normal test, 44% with low and 16% with high levels.

Insulin

Table 8. Test results for insulin in our sample 55% had normal, 15% with high and 29% expressing low levels.

Insulin	Frequency	Valid percent %
Low	19	292
Normal	36	554
High	10	154
Total	65	100
Missing	5	
Total	70	

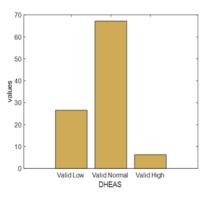


Figure 8. Test results for insulin in our sample 55% had normal, 15% with high and 29% expressing low levels.

DHEAS

Table 9. Test results for DHEAS in our sample. 67.2% showed normal levels, 6.3% with high levels and 26.6% low levels.

DHEAS	Frequency	Valid percent %
Low	17	266
Normal	43	672
High	4	63
Total	64	100
Missing	6	
Total	70	

Figure 9. Test results for DHEAS in our sample. 67.2% *showed normal levels,* 6.3% *with high levels and* 26.6% *low levels.*

Grade*TSH

Grade of the disease (I, II, III)

Table 10. Test results for grade of the disease (I, II, III). The majority of tested samples belong to Grade III 65%, 35% of the patients represents Grade II and with the absence of Grade I.

Grade	Frequency	Valid percent %
Grade II	24	34.8
Grade III	45	65.2
Total	69	100
Missing	1	
Total	70	
Total	70	

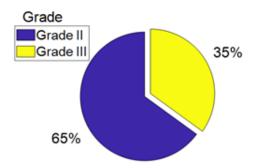


Figure 10. Test results for grade of the disease (I, II, III). The majority of tested samples belong to Grade III 65%, 35% of the patients represents Grade II and with the absence of Grade I.

Inferential Statistics

Hypothesis

Chi-square test was used to quantify different variables, using a dependent variable grade, and independent variables tests According to the chi-square test, p-value=000 thus p-value<005 which implies that it was significant, therefore rejecting H0 and accepting H1 (Tables 11-20)

H0: Showed no relation between grade and tests

H1: Showed is a relation between grade and tests

Grade		TSH			Tetel	p-value	Decision
	Quant	Low	Normal	High	Total		
Grade II	Count	11	9	2	22		There was no relation between Grade and TSH, they weren't significant, H0 was accepted
	Percent	50.00%	40.90%	9.10%	100.00%		
Grade III	Count	10	29	2	41	0.070>0.05	
	Percent	24.40%	70.70%	4.90%	100.00%		
T / 1	Count	21	38	4	63		
Total	Percent	33.30%	60.30%	6.30%	100.00%		
Chi-square tes	ts						
		Value	df	Asymptotic si	gnificance (2-sided)		
Pearson chi-sq	uare	5.328a	2	0.07			
Likelihood ratio)	5.303	2	0.071			
Linear-by-linea	r association	1.991	1	0.158			
N of valid case	s	63					

Table 11. Inferential statistics of Grade*TSH. 2 cells (33.3%) had expected count less than 5. The minimum expected count is 1.40. a: Age.

Grade*Prolactin

Table 12. Inferential statistics of	of Grade*Prolactin. 1 cells	(16.7%) had expected count less than 5.	. The minimum expected count is 3.48. a: Age.

Grade		Prolactin			Total	p-value	Decision			
	Quant	Low	Normal	High	00					
Grade II	Count	4	9	10	23		There was no			
	Percent	17.40%	39.10%	43.50%	100.00%		relation between			
Grade III	Count	6	26	11	43	0.233>0.05	grade and prolactin, they weren't significant,			
Grade III	Percent	14.00%	60.50%	25.60%	100.00%					
Total	Count	10	35	21	66					
Iotai	Percent	15.20%	53.00%	31.80%	66					
Chi-square tes	ts									
		Grade II	df	Asymptotic sig	gnificance (2-sided)					
Pearson chi-so	uare	2.912a	2	0.233	0.233					
Likelihood ratio)	2.91	2	0.233						
Linear-by-linea	r association	0.698	1	0.403						
N of valid case	s	66								

Grade*Testosterone

Table 13. Inferential statistics of Grade*Testosterone. 2 cells (33.3%) had expected count less than 5. The minimum expected count is 3.04. a: *Age.*

Grade		Testosterone			T-4-1	p-value	Decision		
	Quant	Low	Normal	High	Total				
Grade II	Count	12	2	3	17		There was no relation between grade and testosterone, they weren't significant, H0 was accepted		
	Percent	70.60%	11.80%	17.60%	100.00%				
Grade III	Count	18	14	7	39	0.155>0.05			
Grade III	Percent	46.20%	35.90%	17.90%	100.00%				
T-4-1	Count	30	16	10	56				
Total	Percent	53.60%	28.60%	17.90%	100.00%				
Chi-square test	S								
		Value	df	Asymptotic sig	gnificance (2-sided)				
Pearson chi-sq	uare	3.733a	2	0.155					
Likelihood ratio		4.098	2	0.129					
Linear-by-linea	r association	1.213	1	0.271					
N of valid cases	3	56							

Grade*Cortisol

Table 14. Inferential statistics of Grade*Cortisol. 2 cells (33.3%) had expected count less than 5. The minimum expected count is 0.40. a: Age.

Grade		Cortisol			Total	p-value	Decision		
	Count	Low	Normal	High	Totai				
Grade II	Count	1	6	11	18		There was a		
	Percent	5.60%	33.30%	61.10%	100.00%		relation between		
Grade III	Count	0	21	6	27	0.009<0.05	Grade and Cortisol they were significant, H1 was accepted		
Grade III	Percent	0.00%	77.80%	22.20%	100.00%				
Total	Count	1	27	17	45				
TOLAI	Percent	2.20%	60.00%	37.80%	100.00%				
Chi-square test	S								
		Value	df	Asymptotic sig	gnificance (2-sided)				
Pearson chi-sq	uare	9.379a	2	0.009					
Likelihood ratio		9.892	2	0.007					
Linear-by-linear	r association	4.289	1	0.038					
N of valid cases	3	45							

Grade*FSH

Table 15. Inferential statistics of Grade*FSH. 4 cells (66.7%) had expected count less than 5. The minimum expected count is 0.86. a: Age.

Grade		FSH			Total	p-value	Decision
	Count	Low	Normal	High	Totai		
Grade II	Count	1	9	2	18		There was no
	Percent	8.30%	75.00%	16.70%	100.00%		relation between
0	Count	1	12	3	16	0.971>0.05	FSH and Grade, they weren't significant, H0 was accepted
Grade III	Percent	6.30%	75.00%	18.80%	100.00%		
	Count	2	21	5	28		
Total	Percent	7.10%	75.00%	17.90%	100.00%		
Chi-square tes	ts		i				
		Value	df	Asymptotic sig	gnificance (2-sided)		
Pearson Chi-se	quare	.058a	2	0.971			
Likelihood ratio)	0.058	2	0.971			
Linear-by-linea	r association	0.048	1	0.826			
N of valid case	s	28					

Grade*LH

Table 16. Inferential statistics of Grade*LH. 4 cells (66.7%) had expected count less than 5. The minimum expected count is 1.67. a: Age.

Grade		LH			T . ()	p-value	Decision
	Count	Low	Normal	High	Total		
Grade II	Count	6	1	3	10		There was a relation between Grade and LH, they were significant so, H1 was accepted and H0 was rejected.
	Percent	60.00%	10.00%	30.00%	100.00%		
Grade III	Count	1	12	3	16	0.049<0.05	
Total	Percent	6.30%	75.00%	18.80%	100.00%		
	Count	11	9	4	24		
Iotal	Percent	45.80%	37.50%	16.70%	100.00%		
Chi-square test	ts						
		Value	df	Asymptotic sig	gnificance (2-sided)		
Pearson chi-sq	uare	6.036a	2	0.049			
Likelihood ratio		6.665	2	0.036			
Linear-by-linea	r association	0.002	1	0.963			
N of valid cases	S	24					

Grade*Insulin

Table 17. Inferential statistics of Grade*Insulin. 1 cells (16.7%) had expected count less than 5. The minimum expected count is 3.54. a: Age.

Grade		Insulin			Total	p-value	Decision	
	Count	Low	Normal	High	Iotai			
Grade II	Count	11	4	8	10		There was a	
	Percent	47.80%	17.40%	34.80%	100.00%		relation between	
Crede III	Count	8	32	2	42	0.000<0.05	Grade and Insulin, they were significant, H0 was accepted	
Grade III	Percent	19.00%	76.20%	4.80%	100.00%			
	Count	19	36	10	65			
Total	Percent	29.20%	55.40%	15.40%	100.00%			
Chi-square tes	ts							
		Value	df	Asymptotic sig	gnificance (2-sided)			
Pearson chi-so	luare	22.194a	2	0				
Likelihood ratio)	23.485	2	0				
Linear-by-linea	r association	0.005	1	0.942				
N of valid case	s	65						

Grade*DHEAS

Table 18. Inferential statistics of Grade*DHEAS. 2 cells (33.3%) had expected count less than 5. The minimum expected count is 1.31. a: Age.

Grade		DHEA-S			Tetal	p-value	Decision
	Count	Low	Normal	High	Total		
Grade II Percent	Count	8	11	2	21		There was no
	38.10%	52.40%	9.50%	100.00%		relation between	
One de III	Count	9	32	2	43	0.210>0.05	Grade and DHEA's, they weren't
Grade III	Percent	20.90%	74.40%	4.70%	100.00%		significant, H0 was
	Count	17	43	4	64		accepted
Total	Percent	26.60%	67.20%	6.30%	100.00%		
Chi-square tes	te						

Chi-square tests

	Value	df	Asymptotic significance (2-sided)
Pearson chi-square	3.121a	2	0.21
Likelihood ratio	3.048	2	0.218
Linear-by-linear association	0.732	1	0.392
N of valid cases	64		

Case processing summary

Table 19. Case processing summary. *Correlation: Abivariate analysis that measures the strength of association between two variables and the direction of the relationship. In terms of the strength of relationship, the value of the correlation coefficient varies between +1 and -1. A value of ± 1 indicates a perfect degree of association between the two variables. As the correlation coefficient value goes towards 0, the relationship between the two variables will be weaker.

	Cases					
	Valid		Missing		Total	
	Ν	Percent	N	Percent	Ν	Percent
Grade*TSH	63	90.00%	7	10.00%	70	100.00%
Grade*Prolactin	66	94.30%	4	5.70%	70	100.00%
Grade*DHEA-S	64	91.40%	6	8.60%	70	100.00%
Grade*Testosterone	56	80.00%	14	20.00%	70	100.00%
Grade*Cortisol	45	64.30%	25	35.70%	70	100.00%
Grade*FSH	28	40.00%	42	60.00%	70	100.00%
Grade*LH	24	34.30%	46	65.70%	70	100.00%
Grade*Insulin	65	92.90%	5	7.10%	70	100.00%

Correlations between all hormonal levels

Table 20. Correlations between all hormonal levels. *: Correlation is significant at the 0.05 level (2-tailed). **: Correlation is significant at the 0.01 level (2-tailed).

PMNv			Grade	TSH	Prolactin	DHEA-S	Testosterone	Cortisol	FSH	LH
		Correlation coefficient	1	0.203	-0.117	0.124	0.178	343*	0.041	0.073
	Grade	Sig. (2-tailed)		0.111	0.348	0.33	0.189	0.021	0.835	0.735
		N	69	63	66	64	56	45	28	24
Т		Correlation coefficient	0.203	1	.309*	-0.014	0.137	0.236	0.032	-0.105
	TSH	Sig. (2-tailed)	0.111		0.014	0.913	0.332	0.132	0.879	0.642
		N	63	63	63	59	52	42	25	22
		Correlation coefficient	-0.117	.309*	1	0.058	0.223	0.035	-0.025	-0.158
	Prolactin	Sig. (2-tailed)	0.348	0.014		0.657	0.106	0.825	0.9	0.462
		N	66	63	67	62	54	43	27	24
		Correlation coefficient	0.124	-0.014	0.058	1	0.21	-0.168	-0.161	.551**
	DHEA-S	Sig. (2-tailed)	0.33	0.913	0.657		0.131	0.293	0.443	0.008
		N	64	59	62	64	53	41	25	22
pearman's		Correlation coefficient	0.178	0.137	0.223	0.21	1	-0.303	-0.312	0.449
ho	Testosterone	Sig. (2-tailed)	0.189	0.332	0.106	0.131		0.057	0.193	0.071
		N	56	52	54	53	56	40	19	17
		Correlation coefficient	343*	0.236	0.035	-0.168	-0.303	1	0.239	722**
	Cortisol	Sig. (2-tailed)	0.021	0.132	0.825	0.293	0.057	-	0.339	0.004
		N	45	42	43	41	40	45	18	14
		Correlation coefficient	0.041	0.032	-0.025	-0.161	-0.312	0.239	1	522**
	FSH	Sig. (2-tailed)	0.835	0.879	0.9	0.443	0.193	0.339		0.007
		Ν	28	25	27	25	19	18	29	25
L		Correlation coefficient	0.073	-0.105	-0.158	.551**	0.449	722**	522**	1
	LH	Sig. (2-tailed)	0.735	0.642	0.462	0.008	0.071	0.004	0.007	
			24	22	24	22	17	14	25	25
		Correlation coefficient	0.029	0.056	393**	-0.238	-0.011	-0.197	-0.013	.415*
	Insulin	Sig. (2-tailed)	0.82	0.674	0.002	0.067	0.936	0.194	0.948	0.049
		N	65	59	62	60	52	45	27	23

The following significant results from our sample were studied: age, DHEAS, grades of the disease, prolactin, TSH, insulin, testosterone, FSH, LH and cortisol hormones In our findings, the PCOS disease was shown to be directly affecting hormone fluctuations Most of our PCOS patients belonged to Grade III with an average of 65% The remaining 35% was on Grade II category with the absence of Grade I Our inferential statistics showed a significant correlation between the grade of the disease from one end and the expression levels of cortisol, LH and insulin hormones The remaining variables (prolactin, TSH, FSH and DHEA's) showed no significant alteration with respect to grade categories

There was a significant down correlation (-343) between Grade and cortisol value, with a significant value 0021<005, indicating that the compared variables were directly correlated to each other However, a low correlation (0203) was indicated between Grade and TSH levels with significant values of 0021<005 and 0111>005 These results indicate that there was no correlation between Grade and TSH Moreover, a similar outcome occurred between Grade and prolactin levels showing low correlation (-0117) with a significant value 0348>005 indicating that these variables and not directly related There was a positive low correlation between Grade and DHEA-S (0124) with a significant value 0330>005, indicating that these two variables were low correlated and not related Similarly positive low correlations were also observed when Grade was individually compared with Testosterone, FSH and insulin Each comparison showed 0178 with a significant value 0189>005, a 0073 with a significant value 0753>005 significantly and a 0029 with a significant value 0820>005 respectively These findings indicate that these variables were low correlated and not related [24]

Conclusion

Polycystic ovarian Syndrome has a significant relation with the expression levels of cortisol, LH and insulin hormones This syndrome disrupts the menstrual cycle during the reproductive stages, making it hard for women hard to get pregnant PCOS is mainly caused my many factors such as obesity, hyperandrogenism, polycystic ovaries, and ovulatory dysfunction As a result, multiple reproductive and metabolic complications arise such as infertility, menstrual bleeding problems (ranging from amenorrhea to dysfunctional uterine bleeding), and increased risks of endometrial cancer, breast carcinoma and cardiovascular diseases In summary, this syndrome disrupts the menstrual cycle, making it hard for women hard to get pregnant Moreover, high levels LH hormones Therefore, women nowadays should be more aware of PCOS symptoms due to its mortal risks The benefits of prolonged treatments such as life style changes, use of birth control pills and other medications should be strongly considered and closely discussed with patients to restore back normal menstrual cycle

Consent for Publication

Not applicable

Competing Interests

The authors declare there are no competing interests

Funding

The authors declare no specific funding for this work

References

- 1. Zacur HA. Epidemiology, clinical manifestations and pathophysiology of polycystic ovary syndrome. ASiM. 2003;3(8):733-739.
- Buggs C, Rosenfield RL. Polycystic ovary syndrome in adolescence. Endocrinol Metab Clin North Am. 2005;34(3):677–705.
- 3. Dumesic DA, Lobo RA. Cancer risk and PCOS. Steroids. 2013;78(8):782–785.
- 4. Teede HJ, Misso ML, Costello, MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364-379.
- 5. Atiomo WU, Pearson S, Shaw S, et al. Ultrasound criteria in the diagnosis of Polycystic Ovary Syndrome (PCOS). Ultrasound Med Biol. 2000;26(6):977-980.
- Fauser BCJM, Tarlatzis BC, Rebar RW, et al. Consensus on women's health aspects of Polycystic Ovary Syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28-38.
- Azziz R., Carmina E, Dewailly D, et al. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009; 91(2):456-488.
- Hart R, Hickey M, Franks S. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):671-683.
- Gambineri A, Pelusi C, Vicennati V, et al. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26(7):883–896.
- Voutilainen R, Franks S, Mason HD, et al. Expression of Insulin Growth Factor (IGF), IGF-binding protein, and IGF receptor messenger ribonucleic acids in normal and polycystic ovaries. J Clin Endocrinol Metab. 1996;81(3):1003–1008.
- 11. Galazis N, Olaleye O, Haoula Z, et al. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Fertil Steril. 2012;98(6):1590-1601.
- 12. Day C. Metabolic syndrome, or what you will: definitions and epidemiology. Diab Vasc Dis Res. 2007;4(1);32–38.
- Altieri P, Gambineri A, Prontera O, et al. Maternal polycystic ovary syndrome may be associated with adverse pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol. 2010;149(1);31-36.
- Barthelmess EK, Naz RK. Polycystic ovary syndrome: Current status and future perspective. Front Biosci. 2014;6:104–119.

- 15. Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3(2):103–111.
- Alpañés M, Durán FE, Morreale HFE. Androgens and polycystic ovary syndrome. Expert Rev Endocrinol Metab. 2012;7(1):91-102.
- Dunaif A, Wu X, Lee A, et al. Defects in insulin receptor signaling in vivo in the Polycystic Ovary Syndrome (PCOS). Am J Physiol Endocrinol Metab. 281(2):392-399.
- Chang RJ. The reproductive phenotype in polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3(10):688–695.
- 19. Taylor AE, Mccourtn B, Martin KA, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;82(7): 2248–2256.

*Correspondence to

Rabih Roufayel College of Engineering and Technology, American University of the Middle East, Kuwait, Western Asia E-mail: Rabih.Roufayel@aum.edu.kw

- 20. Apparao KBC, Lovely LP, Gui Y, et al. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002; 66(2):297-304.
- 21. Fritz MA, Speroff L. Clinical gynecologic endocrinology and infertility 8th edition. LWW. 2011.
- 22. Speca S, Napolitano C, Tagliaferri G. The pathogenetic enigma of polycystic ovary syndrome. J Ultrasound. 2007;10(4):153–160.
- 23. Dumesic DA, Oberfield SE, Stener-Victorin E, et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487-525.
- 24. Ganie M, Vasudevan V, Wani I, et al. Epidemiology, pathogenesis, genetics and management of polycystic ovary syndrome in India. Indian J Med Res. 2019;150(4):333-344.