Expansion of Prostate Cancer at Single Cell Level

Eva Jagelska

Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic

Abstract

Mutational changes makes the cells in the prostate gland undergo uncontrollable cell divisions, due to which the gland increases size, this leads to the benign prostate hyperplasia (BPH). Every organ in the human body consists of few common cells, similarly prostate gland also comprises of few cell types like luminal and basal epithelial cells, neuroendocrine cells, fibroblasts, lymphocytes, macrophage and endothelial cells. Each cell has its own function based on the gene expression. Sometimes the cells also perform functions of other neighbouring cells via intercellular communication, this specific functions and intercellular communication makes any tissue stabilised and balanced that is tissue homeostasis, which is lacking in the cancer tissues.

Keywords: Mutations; Prostate cancer; Single cell-RNA; Transcriptomics; Cancer

Accepted on: 16 July 2020

Introduction

Experimental studies were conducted on prostate cancer by extracting bulk tissue samples and performed the molecular analysis and came to know that how particular androgens are effecting the development of prostate cancer.

Bulk analysis of the extracted cells provided interesting points, but their pivot was still on cell tissues rather than individual cells. Using an alternative approach, map of gene expression in human prostate cancer samples by spatial transcriptomics but the resolution was not yet at the single-cell level. The single-cell research combining FACS with single-cell RNA sequencing (scRNA-seq) showed the phenotype of the different cell types in human and marine prostates.

The next generation of experiments is now targeting to unveil the effects of interactions of the prostate and prostate cancer cells. Karthaus et al. have elegantly analysed the effects of castration and androgen repletion on mouse anterior prostates. The high number of non-epithelial clusters illustrates the high complexity of the stromal compartment. Clusters of luminal prostate cells, which were confirmed by the luminal markers CD24a, KRT8 and KRT18 and are thought to be the predominant cells of origin of prostate cancer, fell into three subsets (L1 to L3). Subsequently, the researchers provide cellular catalogues of mouse prostates under androgen deprivation, as well as of the cells that are responsible for tissue regeneration after androgen treatment of castrated mice. The combination with IHC revealed that the androgen responses of a luminal cell highly depend on its location in the organ: proximal cells (L2) are less responsive than the more abundant distal luminal cells (L1) but both have regenerative capacities. Another striking finding concerns the expression of ligands and receptors. The single-cell analysis clearly shows which mesenchymal cells respond to androgens by expressing the growth factors neuregulin 2, insulin-like growth factor, fibroblast growth factor 10 and r-spondin 3, as well as which luminal cells express the corresponding receptors. Although the role of such cell - cell circuitsin prostate homeostasis and prostate cancer was known from early organ reconstitution experiments, Karthaus et al. make the jump to the cellular level and also confirm their findings in organoid cultures from human and mouse prostates. Finally, the researchers report the single cell analysis of eight samples of human prostate specimens, four of which were obtained from patients treated with androgen deprivation therapy (apalutamide, abiraterone or leuprolide). We soon expect a full report on the sc RNA-seq data of the corresponding tumour samples but, in their current paper, the researchers link the data from human normal tissue with the mouse experimental data. The untreated human samples consisted of the expected B cells and T cells, natural killer cells, macrophages, dendritic cells, vascular sc RNA-seq into clinical use is its labour intensiveness and its high level of specialization in both the technological expertise and the bioinformatic analysis. However, similar to, for example, the Decipher score, extracted gene signatures could become of use in daily clinical practice, enabling a more precise and personalized approach to prostate cancer treatment.

Conclusion

A new study describes the effects of androgen status on the different cell types in mouse and human prostates, illustrating the potential of single-cell RNA sequencing to study specific biological processes in unprecedented detail. Translating these
new insights into clinical use will increase precision and personalization of prostate cancer treatment.

The Journal will publish original articles, reviews, technical notes, editorials, news and views (commentaries, science policy issues, ethical and legal issues, patient organizations, industry needs and alliances, regulatory issues, etc.), and letters to the editor. Our Editorial Board members are instrumental providing a rapid and efficient editorial process and maintaining high standards within our publication. We would like to take this opportunity to thank you for the effort and expertise that you contribute to reviewing, without which it would be impossible to maintain the high standards of double peer-reviewed journals. For the success of any journal, reviewers are an essential part and therefore the reviewers merit appreciation. The Journal of Molecular Oncology Research relies on the efforts and benevolence of the reviewers on assessing the suitability of a manuscript for publication. The Journal of Molecular Oncology Research. The inputs of reviewers are frequently used in improving the quality of a submitted manuscript. The reviewing of a manuscript is very essential to assure the quality of the manuscript published in any journal. I thank all reviewers for their excellent contributions. At this stage we are calling for submissions of articles, commentaries, and letters to the editor for the upcoming issues. Reviews are by invitation only. We glance forward to receiving your exciting contribution.

Finally, I would like to thank you, the contributors and readers for your interest in the journal and I encourage you to continue to send us your valuable feedback and ideas for further improvement of our journal.

References


*Correspondence to
Eva Jagelska,
Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic,
E-mail: jagelska.eva@gmail.com