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Introduction
Electron microscopy (EM) has enabled imaging of nano-scale 
neuroanatomical structures such as synapses. Serial section 
Scanning Electron Microscopy (ssSEM) and serial section 
Transmission Electron Microscopy (ssTEM) are used to inspect 
tissue volumes on the scale of tens to hundreds of micrometers 
in each dimension. Tissue sections suitable for ssEM typically 
have a thickness that ranges from 30 nm to 70 nm. These 
extremely thin serial sections are cut from a resin-embedded 
specimen using an ultramicrotome equipped with a diamond 
knife. Usually, there can be variations in thickness from one 
section to another (up to 20%) [1]. Another EM technique used 
to obtain volumetric image data is Focused Ion Beam Scanning 
Electron Microscopy (FIBSEM) which allows milling (virtual 
sectioning) in the order of 5 nm  ∼ 10 nm. The problem of 
section thickness variation is also observed in FIBSEM data [2].

EM image processing methods commonly implicitly assume 
isotropy of physical structures along the imaging plane [3]. 
However, sources of anisotropy (stretching) in the imaging plane 
include anisotropy intrinsic to the specimen (e.g., structures with 
a preferred orientation), effects of sample handling and cutting, 
and imperfections in microscope calibration. We focus on the 
image analysis problem of determining the overall stretching 
without distinguishing between the sources of stretching.

In this work, we address estimation of thickness and stretching 
by learning a function ƒ used to infer the spatial distance 
between pairs of sections based on image statistics. To compute 
predictive distributions of spatial distances for new, unseen 
images we use Gaussian Processes (GPs) to perform non-
parametric Bayesian regression. We also use GP regressors to 
estimate stretching.

Section thickness estimates allow the correction of volume 
estimates along the z axis (perpendicular to the cutting plane), 
which is useful for producing more accurate 3D reconstructions 
of imaged tissue. Furthermore, both section thickness and 
stretching estimates can improve the density estimation of 
objects such as synapses (normalized per unit volume). This is 
particularly useful for comparing tissue volumes that underwent 
different experimental manipulations.

However, we note that the stretching factor alone cannot give 
us the original area of regions in the original sample, as it 
cannot distinguish tissue processing-induced stretching from 
any intrinsically “stretched” (anisotropic) nature of the original 
sample. Because these sources cannot be distinguished by 
analyzing the images alone, such absolute measurements are 
beyond the scope of this paper.

For any method that uses the known XY resolution to model the 
absolute spatial distance between sections (including Sporring 
et al. and our method), it is important to have an estimate of 
the anisotropy along the XY plane. Such XY anisotropy affects 
the image statistics along the two axes [4]. If unaccounted for, 
the disparity of these statistics can introduce inaccuracies in 
the results obtained by methods that assume similar statistics 
along the two axes. Our solution to this problem is described in 
section Estimation of Stretching.

In order to validate the thickness estimates, we have directly 
measured the thickness of a set of EM sections using atomic 
force microscopy (AFM). We have made the validation dataset 
publicly available as a benchmark to evaluate section thickness 
estimation methods [5].

Validation results and estimates for z-section thickness and 
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xy-anisotropy for FIBSEM, ssTEM and ssSEM data sets are 
discussed in the following Section.

The code for running the experiments described in this paper is 
publicly available [6].

Related Work
In [4], the relationship between pairwise image dissimilarity 
and distance is computed by averaging over discrete data points. 
The estimated thickness of a new section is interpolated from 
these. [4] assumes that locally, images are realizations of an 
isotropic and rotationally invariant process. By contrast, we 
adopt an approach that is less affected by sample anisotropy in 
the XY plane.

In [7,8], the positions of the images along the Z axis are 
iteratively corrected to seek a consistent solution in which 
adjacent sections have an optimal gap (or thickness) between 
them. The optimal solution adjusts the positions of the images 
such that the distance-similarity curve is maximally smooth 
after a fixed number of iterations.

To keep the section thickness consistent in the FIBSEM 
milling process, [9] presents a method to infer the section 
thickness using the intensity of the ion beam that has been used 
for milling. Moreover, they propose to estimate the section 
thickness by rescaling Z coordinates such that the peaks of the 
autocorrelations along the Z axis and the X axis have the same 
full width at half maximum. However, this method provides 
an average thickness value for all sections unlike Sporring et 
al. and our method that estimate thickness for each section 
individually [4].

An ellipsometric approach was suggested by Peachey [10], 
where the reflected color of the thin sections floating on water 
was used to coarsely estimate the thickness of the sections. This 
method provides a coarse estimate up to an accuracy of 15 nm to 
25 nm and the minimum thickness that can be estimated is about 
50 nm. Accidental folds in the EM sections are used to determine 
the thickness of that section [11]. Furthermore, Fiala and Harris 
[12] proposed the method of cylinders that uses “cylindrical” 
mitochondria to get an estimate of section thickness under the 
assumption that cylindrical mitochondria can be found with 
their axis parallel to the cutting direction.

Estimation of Section Thickness
We propose to learn a function of pairwise image dissimilarity 
to estimate the distance between a pair of sections. Our approach 
adapts the work of Sporring et al. with the variation described 
below [4]. What we refer to as section thickness is the distance 
between a pair of adjacent sections in a series of volumetric 
images.

We assume that local structures in the images vary smoothly in 
all directions at a spatial scale larger than the section thickness. 
Hence, the dissimilarity ,I IA B

S  between two parallel images IA 
and IB only depends on the spatial distance DA,B between them. 
To learn the variation of image dissimilarity as a function of the 
distance, we extract images at known distances along the X and 
Y axes of the imaging plane: , ,= ( )A B I IA B

D f S . This can be done 
by generating two equally sized image patches A and B from 

any original image I which are a distance DA,B=n×∆x away from 
each other. Here ∆x is the length of a rectangular pixel along the 
X axis and n is the number of pixels. Image patch A is centered 
on pixel coordinates (xi,yi), and image patch B is centered on 
pixel coordinates (xi+n × ∆x,yi). We observed that patches 
smaller than 7 × 7 µm tend to have problems caused by sample 
inherent anisotropy (e.g., elongated mitochondria, membranes 
accidentally having similar orientations). The variation of 
thickness estimates with image size for subvolume (1) of the 
validation dataset is plotted in Figure 11. The shape of the 
extracted image patches has no effect on the learned statistics.

As dissimilarity measure ,I IA B
S , we use the standard deviation 

of pixel-wise intensity differences (SDI) defined in eqn. (1), 
similar to Sporring et al. [4]. 

2
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S I I
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We learn two separate distance-dissimilarity functions ƒx (S) 
and ƒy (S) as described in the section Non-Parametric Bayesian 
estimation using Gaussian Process regression. After estimating 
the relative stretching γ between the two axes, we use one of 
these functions to estimate section thickness depending on the 
value of γ. Since samples could be compressed in one direction 
relative to the other due to effects of tissue handling/cutting, 
we recommend using the distance-dissimilarity function 
corresponding to the lesser compressed axis for estimation of 
section thickness.

Non-parametric Bayesian estimation using 
Gaussian Process Regression
We aim to learn from data the distance D of two images as a 
function ƒ of image dissimilarity S between pairs of images: 

D=ƒ(S).	      (2)

Given many image pairs, a training dataset consisting of N 
data points {(Di,Si)}ie{1,…,N} in the distance-dissimilarity plane is 
created. This general supervised learning framework in which 
we estimate the function ƒ that best fits these data points is 
commonly known as regression. The use of a regression model 
to infer an output (displacement in our case) given an input (our 
dissimilarity) is usually referred to as prediction.

In regression analysis, a common method to learn ƒ is to assume 
a specific form ƒw parameterized by a vector w. Then, the 
regression problem can be formulated as finding the best set 
of parameters that minimizes a sample loss Li, for all pairs of 
outputs Di and inputs Si. As an example, least squares regression 
specifies 2

2= ( )i i iL D f S− w   and finds w*, an optimal set of weights 
such that * = argmin ii

L∑ww .

Here we formulate the regression problem in a Bayesian 
framework that aims to infer the posterior distribution of 
the parameters p(w|D,S), given a prior for their distribution 
p(w) and a likelihood coming from the data p(D|S,w), D=ƒw 
(S)+ϵ, where ϵ is a noise model. In this view, the mode of the 
posterior p(w|{Di,Si}i) corresponds to the most likely solution 
for the regressor, and the standard deviation of the posterior 
corresponds to the uncertainty.
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An intrinsic limitation of parametric regression is the need to 
explicitly specify ƒw: in many practical problems, this function 
is a-priori unknown and one might prefer not to make strong 
assumptions about it.

We formulate the inference problem in function space [13] 
using Gaussian Process (GP) regression [14], where a GP is 
set of random variables for which any finite subset has a joint 
Gaussian distribution. A GP defines a probability distribution 
over functions that allows inference in the space of functions. 
The GP is completely specified by a mean function m(S) and a 
covariance function k(S,S') reflecting the mean and covariance 
of the process ƒ, formally: m(S)=  [f(S)] and, k(S,S)= 
[(f(S)−m(S))(f(S′)−m(S′))], where  denotes the expectation 
w.r.t ƒ. The unknown function ƒ(S) can be seen as a realization 
of the Gaussian Process: 

f(S) ~ (m(S),k(S,S′)). 	       (3)

To perform regression using a Gaussian Process [15], only 
the form of the functions m and k have to be specified. These 
functions do not induce a particular form for ƒ: rather, the 
covariance function can be seen as specifying a prior over the 
function space. Also, note that eventual hyperparameters for the 
mean and covariance function can be learned from data.

For our model, we choose the covariance k (S,S') function to be 
a squared exponential (SE): 

2 2
2

1( , ) = exp( ( ) )
2

k S S S S
l

σ′ ′− − . 			                (4)

Intuitively, an SE covariance is a smoothness prior on the 
functions determined by the length-scale l and the signal standard 
deviation parameter σ. For the distance measure SDI we choose 
a function of the form m(S)=a Sb as the mean function, because 
the SDI empirically shows a power law increase starting from 
(0,0). 

The set of hyperparameters θ=(σ,l,a,b)T can be seen as 
hyperpriors that guide the optimization but are not restrictive. 
Both hyperpriors p(a)= (µa, σa) and p(b)=  (µb, σb) are 
Gaussian distributions whose means (µa, µb) and standard 
deviations (σa,σb) are determined using a standard non-linear 
regression of a function D'=a·S'b using a Levenberg-Marquardt 
algorithm. 

For the distance measure SDI, we empirically found that the 
length scale parameter l =10 and the signal variance parameter 
σ=1 allow the GP to model the desired level of smoothness and 
robustness to noise by visual inspection of resulting distance-
similarity plots.

To perform the GP regression itself, we compute the marginal 
likelihood. We then produce a predictive distribution for the 
output D at each test input location S. Figure 1 shows the mean 
and variance of these predictive distributions.

Estimation of Stretching
The learned distance-dissimilarity function can be utilized to 
estimate the stretching coefficient γyx, defined as the deviation 
from isotropy of the image along the Y axis relative to the X 
axis. Consider a small image patch with pixel intensity gradient 
g  at an angle θ relative to the X axis, Figure 2. The intensity 

difference ∆pi at pixel i between 

two image patches separated by one pixel (∆	x) along the X 
axis is given by: = cosi ip p p g xθ∆ − ∆



  , where pi is the pixel 
intensity at pixel i. It follows from eqn. (1) that the dissimilarity 
between these image patches (ignoring boundary conditions) is: 

2
, ,

=1

1( , ) = cos
N

x y x x y i
i

S I I x g p
N

θ+∆ ∆ ∑

 

.			                 (5)

As shown by eqn. (5) the dissimilarity is directly proportional 
to the local gradient of the image patch. We use this result to 
estimate γ along one axis relative to the other (because stretching 
along one axis alters the component of the gradient along that 
axis).

To estimate γ along the Y axis relative to the X axis ( i.e., γyx) 
we perform the following steps: First, the distance-dissimilarity 
function ƒx(S) is learned using images displaced by n pixels along 
the X axis. Then, for a pair of images separated by one pixel 
along the Y axis (distance ∆y), we calculate the dissimilarity 
value S using eqn. (1). Using the value of S, we estimate the 
pixel distance using the regression function ƒx(S) learned 
above. This estimate gives ˆyxn , where ˆ ˆ= yxy n x∆ ∆ . This is the 
expected length of a pixel along the Y axis using the distance-
dissimilarity statistics along the X axis. Therefore, ˆyxn  captures 
the linear scaling of the Y axis with respect to the X axis in terms 

Figure 1. Graph of distance D vs. image dissimilarity S, D = ƒ(S), used 
for the estimation of section thickness and stretching. Shown are the 
training data (red dots), the mean (bold line), and multiple standard 
deviations σ of the Gaussian Process (GP) predictive distributions 
(darkest to lightest orange) 2σ (95%), 3σ (99.7%), 5σ (99.9%).

Figure 2. Left: FIBSEM image of 700 × 700 pixels. Right: An image 
patch with gradient g  located at pi and forming an angle θ w.r.t to the 
X axis.
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of distance-dissimilarity statistics. The stretching coefficient γyx 
of the Y axis relative to the X axis is defined as 

= = =ˆ ˆ ˆ
yx

yx
yx yx

ay y
n x ny

γ ∆ ∆
∆∆

.				               (6)

where ayx is the pixel aspect ratio ∆y / ∆x. For a pixel aspect 
ratio of 1, γyx>1 implies stretching of the Y axis relative to the 
X axis. Once the γyx is known, we suggest to use the regressor 
corresponding to higher γ (lower relative compression) as the 
distance-dissimilarity function for section thickness estimation. 
For instance, provided γyx < 1, the regressor ƒx(S) should be 
used because the linear compression of the Y axis is potentially 
higher than that along the X axis and therefore ƒx(S) will result 
in a more accurate thickness estimate.

However, the exact orientation of the X and Y axes are arbitrary. 
In order to find the directions of maximum and minimum 
stretching, γyx has to be calculated for a range of orientations. 
The lowest value *

yxγ  corresponds to the pair of orthogonal axes 
for which X has the minimum stretching along its direction. 

Validation of Thickness Estimation using Atomic 
Force Microscopy
Validation of EM section thickness estimation methods should 
be performed using a standard data set with accurately measured 
thickness. We used Atomic Force Microscopy (AFM) [16] to 
produce a dataset for validation of thickness estimates. AFM 
is a scanning probe microscopy technique that can be used 
to measure the 3D surface profile of a section at nanometer 
resolution. The AFM probe is a sharp tip with a typical radius 
of 5 ~ 50 nm that scans the surface while measuring changes in 
the atomic forces between the sample and the tip. AFM allows 
us to directly measure the thickness of ssEM sections placed on 
flat silicon wafers (Figure 4).

An uncertainty analysis for height measurements using AFM has 
been performed in [17-19]. The uncertainty of the measurements 
for heights of around 200 nm is reported to be 1 nm whereas for 
heights below 50 nm the uncertainty is 0.5 nm.

As illustrated in Figure 5a, thickness measurements were 
obtained using AFM along three distinct scan lines along each 
ultrathin tissue section. We measured the thickness of each 
section as the average distance between the surface of the silicon 
wafer and the surface of the EM section Figure 5b. EM imaging 
(with parameters: dwell time 7 µs, probe current 500 pA, extra-
high tension (EHT) 1.5 kV) typically mills around 10 nm of 
tissue. To avoid offsetting the AFM thickness measurements 
by EM milling, we made sure that EM imaging and AFM 
measurements were performed on non-overlapping regions on 
the sections.

Results and Discussion
To validate the estimation of the stretching coefficient γ, we 
used linearly compressed versions of a synthetic image as 
shown in Figure 3a. The original image was composed of bright 
circular objects with radial gradients. Then the image was re-
scaled with known γ along the Y axis (vertical) down to different 
sizes. Using eqn. (7) we recovered γ with an average accuracy of 
97.3% for a linear compression of 75% (Table 1).

(a) 
 

  
(b) 

 
(c) 

Figure 3. (a) Four images with an artificially generated pattern 
featuring locally radial gradients. From left to right the images 
underwent a simulated linear stretching (in this case, compression) 
along the Y axis. The legend specifies the normalized size w × h of 
the image. (b) The distance-dissimilarity plots along the X axis for 
shifted versions of the radial gradient pattern along the horizontal 
axis and, (c) along the Y axis for shifts along the vertical axis.

Figure 4. EM image of several trapezoidal brain sections placed on a 
silicon wafer. The image was obtained at a pixel resolution of 2.2 µm 
× 2.2 µm.
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Estimated γ for real data sets (ssTEM [20] and FIBSEM) are 
summarized in Table 1. The FIBSEM dataset of 490 images was 
taken from songbird brain tissue imaged at 5 nm × 5 nm resolution 
along the XY plane and with expected section thickness of 10 
nm. The entire FIBSEM stack had the dimensions 8 µm × 8 µm 
× 5 µm. Estimates of γ and section thickness for the FIBSEM 
dataset are plotted in Figure 10.

To validate our thickness estimation method, we prepared a 
dataset of 20 serial sections, taken from the same brain area. 
Three image stacks were obtained by performing ssSEM on 
three non-overlapping areas of these sections. The image size of 
each of these subvolumes are: (1) 9.5 µm × 9.5 µm (2) 6.5 µm × 

6.5 µm (3) 6.5 µm × 6.5 µm. The EM images were acquired at 
a spatial resolution of 5 nm × 5 nm.

We found that the FIBSEM data were associated with a higher 
γ (lower linear compression) compared to the ssSEM data. This 
is due to the fact that unlike in ssSEM, FIBSEM does not make 
use of a diamond knife for thin sectioning, which is a potential 
source of linear compression. Instead, FIBSEM uses an ion 
beam to successively burn away thin layers.

The image similarity measures used in our approach and 
Sporring et al. are based on local deviations of pixel intensities 
across adjacent sections [4]. Therefore, thickness estimates 
are sensitive to errors in image registration. For this reason, 
it is important to make sure that the image stack is properly 
registered before applying either of these methods for section 
thickness estimation.

We registered the serial section images into a 3D image volume 
using elastic alignment [21] that jointly performs 2D stitching, 
3D alignment, and deformation correction. This approach 
is based on an initial alignment obtained by matching image 
landmarks on nearby sections, where the landmarks are defined 
using SIFT image features. Further deformations are estimated 
using local block matching. Afterwards, this initial alignment is 
optimized by modeling each section as a mesh of springs where 
parts of the image are allowed to translate and rotate subject to 
imposed rigidity limits.

As mentioned in the section titled Estimation of Stretching, 
the image axes X and Y are arbitrarily chosen. Therefore, 
we estimated the maximum stretching factor *

yxγ  for a range 
of possible axes by rotating the original images up to 180º. 
Anisotropy estimates for a range of such rotations are shown 
in Figure 12. We found that thickness estimation is optimal 
when the images are rotated such that the stretching factor γyx 
is minimized. At this rotation angle, the X axis is minimally 
stretched compared to the Y axis.

For the validation dataset, the average section thickness 
measured using AFM was 74.35 ± 2.64 nm. Our method was 

 
(a) 
 

 
(b) 

Figure 5. (a) is an AFM image of one section prepared for EM. The 
pixel intensity corresponds to the relative height above a reference 
point on the platform on which the section is placed. We obtained 
AFM measurements along three scan lines (green, red and blue) as 
shown in the image. This process is separately repeated for all sections. 
(b) shows the measured height of the section relative to the height of 
the silicon wafer along each of the three colored lines in Figure 5a. 
The average of these three measurements is taken as the AFM section 
thickness.

γ for synthetic images (Figure 3) γ for real images
Ground-Truth 0.75 0.50 FIBSEM 0.94 ± 6.6×10-4

Estimates 0.730 0.63 ssSEM 0.86 ± 0.01

Table 1. Estimated stretching coefficient γyx in synthetic images (Figure 
3), 500 FIBSEM images, and 20 ssSEM images.

Figure 6. Absolute estimation errors using our method and that of 
Sporring et al. relative to AFM measurements of section thickness for 
the three ssSEM image stacks used for validation. Absolute estimates 
for sample S1 are plotted in Figure 7. Mean absolute error estimates 
for the three volumes using our method: 9.9%  ±  2.0, 15.8%  ±  3.64, 
and 12.3%  ±  2.0; using Sporring et al. : 18.3%  ±  1.04, 18.9%  ±  2.8, 
and 14.1%  ±  1.8.
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able to estimate the thickness of the 20 sections with a mean 
absolute error of 9.91% ± 1.97, whereas the XY-averaging 
method in Sporring et al. produced thickness estimates with a 
mean absolute error of 18.26% ± 1.04 [4]. The full comparison 
of estimation errors is plotted in Figures 6 and 7. Because our 
estimation method is purely based on image statistics, it is 
prone to overestimating the thickness when images are noisy. 
An instance of such an overestimation is illustrated in Figure 9.

In addition to thickness measurements of ssSEM sections using 
AFM, we propose a second approach for validating thickness 
estimates. This second approach uses synthetic sections with 
known thicknesses derived from nearly isotropic FIBSEM 
volumes with known XY resolution. We use the method 
described in the section Estimation of Section Thickness to 
generate data points for learning the function given in eqn. (2). 
To validate section thickness estimates, we split each image 
stack into separate training and test data sets. The training sets 
were used to learn the regression function given by eqn. (2) and 
the test images were used for validation. We trained a regression 
function on 100 images of size 7 µm × 4.5 µm from a FIBSEM 
image stack, Figure 1. We used the test images to create 3 
separate image sequences of 30 images each with known 
displacements of 10 nm, 50 nm, and 75 nm along the relatively 

 
(a) 

 
(b) 

Figure 9. (a,b) Image pair corresponding to the peak thickness 
estimate (section ID = 14) in Figure 7 (b). Artefacts seen as white 
lines in image (b) (highlighted using red ellipses) have contributed to 
increasing the dissimilarity between the two images, thereby resulting 
in an overestimate of thickness.

 
(a) 

 
(b) 

Figure 7. Validation using AFM: Comparisons of thickness estimates 
using our method (GP), the method of XY averaging introduced by 
Sporring et al., and direct measurements of section thickness by atomic 
force microscopy (AFM), using (a) subvolume (1) of the validation 
dataset (image size: 9.5 µm × 9.5 µm) and (b) subvolume (2) of the 
validation dataset (image size: 6.5 µm × 6.5 µm) [4].

Figure 8. To compare our thickness estimates with relative Z 
coordinates estimated using (Rel-Z) [7], we have produced relative 
thicknesses by normalizing absolute thicknesses obtained from both our 
method and from AFM measurements. Compared to relative thicknesses 
obtained wtih AFM, the mean absolute error of our method is 0.13 ± 
0.03 whereas Hanslovsky et al.’s method produces a mean absolute 
error of 0.27 ± 0.04 [7]. This plot was produced using subvolume (1) 
of the validation dataset.
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uncompressed axis. The results obtained are summarized in 
Table 2 along with a comparison with Sporring et al. [4].

Although included for comparison, we note that in Sporring 
et al. an average distance-dissimilarity curve is generated for 
each pair of images between which the distance is estimated 
and therefore the interpolation function is based on the statistics 
of the validation data itself, unlike in our approach [4]. A recent 
contribution towards correcting Z coordinates of a 3D image 
stack is presented in [7,8], where relative Z positions for each 
image are calculated. In order to compare, we converted absolute 
thickness estimates of our method and thickness measurements 
from AFM (subvolume 1 of the validation dataset) into relative 
thickness by normalizing the thickness values using the mean 
absolute thickness [7]. With respect to relative thickness values 

obtained by AFM, our approach resulted in a mean absolute 
error of 0.13 ± 0.03 where-as, Hanslovsky et al. obtained a mean 
absolute error of 0.27 ± 0.04 Figure 8 [7]. For this comparison 
we used the Fiji plugin available for Hanslovsky et al. using 
its default parameters with the option for reordering disabled 
[7,22].

Conclusion
We have presented a method for estimating both thickness and 
stretching in EM imagery, using image statistics alone. Our 
method is based on learning the distance between adjacent 
sections as a function of their dissimilarity.

The stretching coefficient quantifies the cumulative effect of 
different sources of anisotropy along the XY plane including 
handling, storing, cutting, imaging, and the intrinsic anisotropy 
of the specimen. Anisotropy estimation is a useful pre-processing 
step for any method that assumes isotropy in image statistics.

As part of this work, we have created a dataset of 20 ssSEM 
images along with thickness measurements directly obtained 
with AFM. We used this dataset to compare the performance 
of our thickness estimation method with other methods that use 
image statistics for indirect estimation of section thickness.

Thickness estimation methods based on image statistics alone 
are prone to be inaccurate if sample anisotropy is not taken 
into account. We have shown that estimation of XY anisotropy 
can help to improve the accuracy of thickness estimation. Our 
anisotropy estimation method selects the optimal rotation of 
the original image stack to train a regressor that is minimally 
affected by sample anisotropy. We recommend using images 
larger than 7 µm × 7 µm so that effects of locally oriented 
structures may even out given a sufficient scope.
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“ground truth” thicknesses were derived from nearly isotropic 
FIBSEM data as described in Section 3.

  
(a) 

(b) 

Figure 10. (a) Section thickness estimates (D) for a FIBSEM stack of 
500 consecutive images (expected: D ≈ 10 nm) and (b) Estimates of the 
stretching coefficient γyx f or a FIBSEM stack of 490 images.

Figure 12. γyx estimated for different rotations about the Z axis. The 
minimum γ*

yx=0.94 corresponds to the stretching coefficient achieved 
at 170º rotation as pointed out by the arrow. 
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