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Editorial
I recently attended the sixth Sustainable Nanotechnology 
Organization (SNO) Conference from November 5-7, 2017. 
When I was a Ph.D. student at Northwestern University, I 
attended the inaugural SNO conference in 2012, from when 
this conference has witnessed the development and evolution 
of the Environmental Nanotoxicology field. This year, the 
SNO conference honoured Professor Pedro Alvarez of Rice 
University, who made great and indispensible contribution to 
both applications and implications of nanomaterials (NMs). 
This reminded me of his pioneering work on comparative 
eco-toxicity of metal oxide NMs to bacteria (Adams et 
al., Water Research, 2006, total citations > 1000) [1], the 
earliest publication on environmental Nanotoxicology I could 
remember. So, 5 years after the first SNO conference and 11 
years after Professor Alvarez’s inspiring work, what does the 
Environmental Nanotoxicology field look like now? What have 
we learned from the past? And what should we do as a researcher 
at present and in the future? In my personal perspective, the 
following aspects are highlighted in this Editorial.

Firstly, characterization of NMs has been significantly improved 
in toxicological studies. This is not trivial because the toxicities 
of NMs are tightly related to their physicochemical properties. In 
early studies, scientists were trying to understand whether NMs 
are more toxic than their bulk counterparts due to their smaller 
sizes. As a result, nanomaterial characterization was mainly 
focusing on the primary (and also aggregate) sizes of NMs. As 
more studies have been performed on a diverse set of NMs, we 
have realized that other material properties, such as morphology 
[2-4], surface charge [5,6], and functionality[7-9], markedly 
influence the reactivities and toxicities of NMs. For example, 
my previous work demonstrates that material morphology 
and dimensionality regulate the phototoxicity of nano-TiO2 by 
governing how nano-TiO2 particles align at the bacterial cell 
surface [4]. Thanks to the interdisciplinary collaboration among 
material scientists, toxicologists, and environmental scientists, 
a detailed characterization of tested NMs has been achieved 
and become a necessary routine in most publications on 
Nanotoxicology nowadays. This progress has greatly promoted 
our mechanistic understanding of NM toxicities and potentially 
establishes a structure-function-toxicity relationship that guides 
the design of sustainable NMs with mitigated toxicities.

Secondly, the importance of environmental transformations 
has been recognized in the Environmental Nanotoxicology 
community. Once entering the environment, NMs are subjected 
to various physical, chemical, and biological transformations, 
which alter the properties, activities, bioavailability, and 
toxicities of NMs [10]. One notable example is the influence of 
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solution chemistry on the toxicities of metal nanoparticles such 
as nanoscaled silver (Nano-Ag) [11,12]. The concentrations 
of Cl-, S2-, and thiol-containing substances have been shown 
to significantly change the fate, speciation, and toxicity of 
Nano-Ag [11-13], due to their strong complexing capabilities 
to Ag ions. Several state-of-the-art techniques, such as high-
resolution transmission electron microscopy (HR-TEM) [14] 
and synchrotron-based X-ray absorption spectroscopy (XAS) 
[15-17], have been employed to understand the environmental 
transformations of NMs. The resulting findings confirm 
drastic alteration of NMs in the environment, emphasizing the 
importance of environmental transformations in assessing the 
toxicity and ecological risks of NMs.

Thirdly, environmental nanotoxicology research is moving 
towards more realistic scenarios. Most of the early studies 
on nanotoxicology were performed in the laboratory, and the 
applied NM concentrations could be orders of magnitude higher 
than the predicted environmental concentrations. Holden et 
al. critically evaluated the environmental relevance of current 
hazard assessment on NMs, pointing out that several uncertainties 
exist in terms of predicted environmental concentrations, 
bioavailability, and effective toxic concentrations of NMs 
[18]. Fortunately, chronic studies with more environmentally 
meaningful concentrations are increasingly adopted to simulate 
prolonged exposure of NMs at low concentrations in the 
environment [19-21]. Also, researchers are moving beyond 
traditional viability-based toxicological tests to investigate 
the sub-lethal effects using more appropriate and diverse bio-
receptors [22-26]. Furthermore, more studies have focused on 
characterizing and detecting NMs present in the environment 
[27-30]. New technologies, such as single-particle inductively 
coupled plasma mass spectrometry (SP-ICP-MS), are emerging 
as powerful tools that enable quantification of NMs contained in 
environmental samples [31-33].

However, the Environmental Nanotoxicology community is 
still facing many challenges. More information still needs to 
be gathered to inform a meaningful regulatory framework on 
NMs. Since the toxic effects of NMs are a function of both NM 
properties and experimental condition, a standardized testing 
procedure or inter-laboratory comparison will be of great value 
to improve the reliability and consensus of toxicological data 
associated with NMs. Also, due to the rapid development of 
nanotechnology, myriad novel NMs (e.g., two-dimensional 
NMs [34], hybrid NMs [35,36]) are being designed, produced, 
and incorporated into numerous industrial and commercial 
products. Thus, the utilization of more efficient approaches (e.g., 
high-throughput screening [37]) will help facilitate our pace of 
understanding the ecological and health effects of NMs. Last but 
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not least, we are still lack of enough technologies that characterize 
both concentrations and properties of NMs in the environment 
accurately. In particular, we need to developmethods that are 
able to distinguish engineered NMs from those inherently 
present in nature. In order to achieve this goal, a combination 
of analytical, spectroscopic, and microscopic tools will be 
likely employed to provide a comprehensive picture of NMs in 
complex environmental matrices.
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