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Abstract

Periodontitis initiated by periodontopathic bacteria is associated with several systemic diseases.
Porphyromonas gingivalis (P. gingivalis) is one of the major pathogens causing periodontal diseases, and
is thought to also play a critical role in possible mechanisms linking periodontitis with other systemic
disorders. We explored whether the production of pro-inflammatory cytokines interleukin-6 (IL-6),
interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) in the liver and spleen changed as a result
of oral administration of P. gingivalis in mice. mRNA expression of pro-inflammatory cytokines was
analysed by Real-time Quantitative polymerase chain reaction (RT-qPCR) and cytokine protein levels
were measured by Enzyme-Linked Immunosorbent Assay (ELISA) and immunohistochemistry. In
addition, histological changes of liver and spleen tissues were monitored using haematoxylin and eosin
staining. The results showed that liver and spleen tissue of P. gingivalis treated mice had higher mRNA
and protein levels of pro-inflammatory cytokines compared to the control group. The production of pro-
inflammatory cytokines in the liver and spleen was therefore suggested to increase as a result of oral
administration of P. gingivalis in mice, and may provide further understanding of the mechanisms
linking periodontitis and systemic disorders.
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Introduction
Periodontitis, a chronic inflammatory condition of the
periodontium, is one of the most common oral diseases
worldwide. Many reports have revealed the correlation
between periodontitis and systemic diseases including
cerebrovascular and cardiovascular disease, rheumatoid
arthritis, diabetes mellitus, chronic obstructive pulmonary
disease and preterm low birth weight [1-6]. Periodontitis is
caused by gram negative microorganisms and their production
of including lipopolysaccharide (LPS), peptidoglycan, DNA
which can damage the connective tissues and alveolar bone,
finally leading to the loss of the tooth [7]. P. gingivalis, a gram
negative anaerobe, is the putative predominant pathogenic
bacteria associated with periodontitis [8]. Oral infection by P.
gingivalis has indeed been demonstrated to induce
periodontitis and activate an immune response [9].

Pattern recognition receptors such as Toll-like-receptors
(TLRs) are key to innate immune system as they recognise
microbial structural motifs known as pathogen-associated
microbial patterns (PAMPS) [10]. The TLR signalling pathway
is critical for the initiation of periodontitis pathology [11]. Of
ten human TLRs, TLR2 and TLR4 have previously been

related to periodontal disease [12]. Moreover, TLR2 and TLR4
may also contribute to the progression of metabolic disorders
like insulin resistance and hepatic steatosis [13]. In addition to
the local production of inflammatory mediators, periodontitis
also causes a significant up-regulation in circulating
inflammatory mediators such as TNF-α, IL-6 and IL-1β
[14,15].Periodontitis is often associated with systemic
disorders. The underlying mechanism possibly involves
PAMPS entering the systemic circulation and activating host
defence cells to induce the secretion of cytokines, chemokines
and other kinds of immune factors in endothelial cells and
hepatocytes [16]. In addition, various locally produced pro-
inflammatory stimuli such as IL-1, TNF-α and IL-6 can also
invade circulation and induce a systemic response [17,18].

The release of inflammatory mediators (TNF-α) in circulation
has been related to various systemic diseases including insulin
resistance, diabetes, atherosclerosis as well as non-alcoholic
fatty liver disease (NAFLD) [19,20]. NAFLD is the most
common liver disease worldwide and has recently been
integrated with the metabolic syndrome to include steatosis,
steatohepatitis, liver fibrosis, cirrhosis, and carcinoma [21-23].
Human trials reported that NAFLD patients were at greater risk
of P. gingivalis infection compared to healthy patients. The
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study implied that endotoxins from P. gingivalis and
inflammatory mediators released by the microorganisms can
enter the blood circulation and may participate in the
mechanism linking periodontitis and NAFLD [24]. To
conclude, there is a lot of data supporting the hypothesis that
periodontitis can trigger a systemic inflammatory response and
exert an inflammatory response in distant tissues. However,
whether periodontitis can induce alterations in the expression
of pro-inflammatory cytokines in remote organs such as the
liver and spleen has remained unproven until now. The study
presented here explored the effect of oral administration of P.
gingivalis on the production of pro-inflammatory cytokines
TNF-α, IL-1β and IL-6 in the liver and spleen in mice.

Materials and Methods

Animals and study design
This study followed guidelines from the Institutional Authority
for Laboratory Animal Care of Jilin University and received
the ethics committee approval of Hospital of Stomatology of
Jilin University No.201703020000286. Thirty female C57BL/6
mice aged between four and six weeks old were purchased
from the Animal Experiment Center of Jilin University.
Animals were separated into two groups (n=15 per group): P.
gingivalis group and the control group. Both groups received
the same amount of feed and were kept under the same
conditions. Mice were sacrificed by deep anesthesia after five
weeks of oral administration and samples were taken from the
liver and spleen.

Oral administration of P. gingivalis
P. gingivalis ATCC33277 was cultured in Columbia Blood
Agar (BIO-KONT, Wenzhou, China). The density of P.
gingivalis in an overnight culture was examined by
spectrophotometry at 550 nm. 100 μl phosphate buffered saline
with 2% carboxymethyl cellulose (Aladdin Industrial
Corporation, Shanghai, China) containing 109 colony forming
units of live P. gingivalis was given to the mice in the P.
gingivalis group with a feeding needle. The suspension was
given every other day for five weeks. Similarly, the control
group was given the control solution of phosphate buffered
saline with 2% carboxymethyl cellulose.

Quantitative Real-time PCR for gene expression of
IL-1β, IL-6 and TNF-α in the liver and spleen
TRIzol reagent (Invitrogen Corp, Carlsbad, CA) was used to
extract total RNA of liver and spleen samples according to
manufacturer’s instructions. The isolated RNA was used as the
template with the PrimeScript RT reagent Kit and gDNA
Eraser (DRRO47A, TaKaRa, China) to obtain cDNA. RT-
qPCR was performed using a 25 μl reaction with SYBR
Premix Ex Taq II (RR420Q, TaKaRa, China) containing cDNA
from 25 ng of total RNA per sample (Mx3005P Real-Time
QPCR System; Agilent Technologies, USA). The house-
keeping gene mouse β-actin was used as a loading control.

Gene expression was calculated using the 2-ΔΔCt method. The
following primers were used for RT-qPCR:

IL-1β: (F5’-TCCAGGATGAGGACATGAGCAC-3’) and
(R5’-GAACGTCACACACCAGCAGGTTA-3’);

IL-6: (F5’-CCACTTCACAAGTCGGAGGCTTA-3’) and
(R5’-CCAGTTTGGTAGCATCCATCATTTC-3’);

TNF-α: (F5’-ACTCCAGGCGGTGCCTATGT-3’) and (R5’-
GTGAGGGTCTGGGCCATAGAA-3’);

β-actin: (F5’-CATCCGTAAAGACCTCTAGCCAAC-3’) and
(R5’-ATGGAGCCACCGATCCACA-3’).

ELISA assay
Protein levels of IL-6, IL-1β and TNF-α in the liver and spleen
were measured using Mouse IL-6, IL-1β and TNF-α ELISA
kits (Lengton Bioscience Co, Shang Hai, China) in accordance
with respective manufacturer’s protocols. In brief, the
monoclonal antibody specific for either mouse TNF-α, IL-6 or
IL-1β was coated on the 96-well plates. Then, specimens and
biotin-labelled antibodies against mouse TNF-α, IL-6, IL-1β
and specimens were added. After adding the HRP-conjugated
antibody into each well, the plates were incubated at 37°C for
1 h and rinsed five times. Chromogen solutions A and B were
used as substrate and the reaction was terminated with Stop
reagent after colour formation. The absorbance of each well
was read at 450 nm.

Immunohistochemistry
Tissue samples taken from the liver and spleen were fixed
overnight in 10% formalin. The sections from the liver and
spleen were embedded in paraffin and cut to make 5 μm slides.
After hydrating and treatment with 0.3% H2O2 in methanol, the
sections were incubated with primary rabbit polyclonal TNF-α
(1:100, Abcam, ab6671), IL-6 (1:100, Bioss, bs-0379R,
China), IL-1β (1:100, Bioss, bs-0812R, China) antibodies in a
humidified chamber for 1 h at 37°C. The sections were washed
with phosphate buffered saline, followed by incubation with
polymer helper and secondary antibodies (goat anti-rabbit IgG
HRP) from the Polink-2 plus kit (ZSGB-BIO, PV-9001).
Finally, colour was developed with 3, 3-diaminobenzidine
(ZSGB-BIO, ZLI-9018) and counterstained with hematoxylin.
Positive expression was evident as brown staining. Images
were captured with an Olympus BX 51 (Japan) operated with
the micro imaging software cellSens (Olympus, Japan). Five
fields were randomly selected from each section and assessed
at magnification X200. Quantification of positive expression in
each field was quantified as the mean optical density (MOD;
integral optical density/total area) with Image Pro Plus 6.0.

Histopathology
After fixing overnight in 10% formalin, sections of liver and
spleen tissue were cut as described in immunohistochemistry
and stained with haematoxylin and eosin for histological
examination. Five randomly selected fields from each section
were analysed under a light microscope (Olympus BX 51,
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Japan) at magnification X200. The histological changes of
liver and spleen tissue were evaluated by a specialist blind to
the grouping.

Statistical analysis
All data are present as mean ± standard deviation (SD). The
significance of the differences between the P. gingivalis group
and the control group was analysed using the Student's t-test in
SPSS version 17.0.0. P<0.05 was considered as significant
difference.

Results

Gene and protein expression of pro-inflammatory
cytokines in liver tissue
Elevated mRNA levels of the pro-inflammatory cytokines
TNF-α, IL-6 and IL-1β were found in the P. gingivalis group
(Figure 1A and Table 1).

Figure 1. The expression of pro-inflammatory cytokines in liver tissue
of the P. gingivalis and control group. (A) Gene levels of pro-
inflammatory cytokines were measured by RT-qPCR. Enhanced gene
expression of IL-6, IL-1β, TNF-α was observed in the P. gingivalis
group; (B) Protein abundance of pro-inflammatory cytokines in liver
tissue was measured by ELISA. Significant differences were detected
between the P. gingivalis group and the control group; (C) Positive
expression of IL-6, IL-1β, TNF-α in liver tissue was quantified as
MOD. Liver MOD level from the P. gingivalis group was higher than
the control group; (D) Immunohistochemical images of IL-6, IL-1β,
TNF-α in liver tissue of the P. gingivalis and the control group. Scale
bar=50 μm. The data are given as the means ± SD; *p<0.05;
**p<0.01.

Table1. Analysis of TNF-α, IL-6, IL-1β mRNA expression levels in
mice liver tissues by qRT-PCR.

Control P. gingivalis
P-value

Mean ± SD Mean ± SD

IL-6 1.00 ± 0.15 2.26 ± 0.36 <0.01**

IL-1β 1.00 ± 0.03 2.36 ± 0.49 <0.01**

TNF-α 1.00 ± 0.04 2.25 ± 0.12 <0.01**

Gene expression was calculated using the 2-ΔΔCt method. Data is expressed as
mean ± SD. **Indicates statistical significant difference (P<0.01) between P.
gingivalis infected mice and the corresponding control group.

In addition, oral administration of P. gingivalis increased
protein levels of TNF-α, IL-6 as well as IL-1β (Figure 1B).
Immunohistochemical staining of liver tissues also indicated
up-regulation of protein expression compared with the control
group. There was a significant difference in MOD between the
P. gingivalis and the control group (p<0.01) (Figures 1C and
1D).

Gene and protein expression of the pro-inflammatory
cytokines in spleen tissue
Production of pro-inflammatory genes TNF-α, IL-6 and IL-1β
were significantly up-regulated in the P. gingivalis group as
compared to the control group (p<0.01) (Figure 2A and Table
2).

Figure 2. The expression of pro-inflammatory cytokines in spleen
tissue in the P. gingivalis and the control group. (A) Pro-
inflammatory genes expression was analysed by RT-qPCR. Levels of
IL-6, IL-1β, TNF-α mRNA were higher in the P. gingivalis group
compared with the control group; (B) The protein expression of IL-6,
IL-1β, TNF-α in spleen tissue was determined by ELISA. There were
statistical differences between both groups; (C) MOD of
immunohistochemical staining in spleen tissue. Elevated levels of
MOD were seen in the P. gingivalis group; (D) Immunohistochemical
staining of the spleen tissue. Scale bar=50 μm. The data are given as
the means ± SD; *p<0.05; **p<0.01.

Correspondingly, protein levels of TNF-α, IL-6 and IL-1β were
also higher (Figure 2B). Furthermore, the
immunohistochemical staining of spleen tissue from the P.
gingivalis group indicated elevated levels of MOD which
implied positive expression of TNF-α, IL-6 and IL-1β proteins
(Figures 2C and 2D).

Table 2. Analysis of TNF-α, IL-6, IL-1β mRNA expression levels in
mice spleen tissues by qRT-PCR.

 
Control P. gingivalis

P-value 
Mean ± SD Mean ± SD

IL-6 1.00 ± 0.13 6.20 ± 0.20 <0.01**

IL-1β 1.00 ± 0.06 3.07 ± 0.20 <0.01**
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TNF-α 1.00 ± 0.04 2.82 ± 0.64 <0.01**

Gene expression was calculated using the 2-ΔΔCt method. Data is expressed as
mean ± SD. **Indicates statistical significant difference (P<0.01) between P.
gingivalis infected mice and the corresponding control group.

Histological analysis of liver tissue
Scattered micro vesicular steatosis was observed in
hepatocytes of the P. gingivalis group. A majority of
hepatocytes had “foamy” changes where the nuclei were
typically centrally located. Furthermore, a few inflammatory
cells had infiltrated the tissue (Figure 3). In contrast, liver
sections from the control group showed no obvious alterations
in the hepatic cord structure or hepatic cells (Figures 3).

Figure 3. Histological analysis of liver tissue. (A, B) No evidence of
inflammation was observed in the control group; (C, D) Widespread
micro vesicular steatosis was observed in liver tissue from the P.
gingivalis group, as characterised by the “foamy” changes. (A, C)
Scale bar=100 μm; (B, D) Scale bar=50 μm.

Figure 4. Histological analysis of spleen tissue. (A, B) No
morphological and histological alterations were observed in spleen
tissue of the control group; (C, D) The activation of the white pulp
and decrease of red pulp were shown in the P. gingivalis group
compared with the control group; (A, C) Scale bar=100 μm; (B, D)
Scale bar=50 μm.

Histological analysis of spleen tissue
Several visible histological changes were found in the spleen
tissue of P. gingivalis administered mice. We observed obvious
activation of the white pulp and reduction of the red pulp
compared with the control group. In addition, neutrophil

infiltration was detected in the spleen tissue of the P. gingivalis
group (Figure 4). In contrast, no histological changes of
inflammation were detected in spleen tissue obtained from the
control group (Figure 4).

Discussion
To our knowledge, this is one of the first animal model studies
revealing the effects of periodontitis on the expression of pro-
inflammatory cytokines in liver and spleen by oral
administration of P. gingivalis. P. gingivalis can initiate
periodontitis; LPS from P. gingivalis can enter gingival tissues
and elicit an inflammatory response leading to an increase in
pro-inflammatory cytokines [25]. The proposed pathways
linking periodontitis and its systemic effects include the direct
impact of bacterial products from the oral cavity and the
dissemination of inflammatory mediators and immune
complexes, including cytokines and chemotactic factors,
generated by periodontitis lesions [26,27]. Recent studies
reported that elevated levels of inflammatory cytokines such as
IL-6 and IL-1β were secreted by the host in response to P.
gingivalis stimulation [28,29]. Although the precise
mechanisms remain unclearthe accumulation of inflammatory
mediators in the circulation is thought to trigger the
inflammatory response in remote tissues.

The liver is pivotal in protecting the host against
microorganisms and microbial components as it can trigger an
immunological response against endogenic and exogenic
toxins present in the portal blood [30]. To date, an increasing
number of studies have evidenced a correlation between
periodontal diseases and the pathogenesis of liver diseases such
as NAFLD, cirrhosis and hepatocellular carcinoma [31].
However, there is no direct evidence implicating the oral
administration of P. gingivalis with the induction of pro-
inflammatory cytokines expression in the liver. In this study,
we observed that livers from mice in the P. gingivalis group
exhibited increased levels of pro-inflammatory cytokines TNF-
α, IL-6, IL-1β compared with the control group. Numerous
studies demonstrated a close correlation between hepatic
inflammation and chronic liver disease [32,33]. Cytokines
produced by hepatic and inflammatory cells significantly
contributed to the development of liver disease. TLRs are
capable of recognising endotoxins such as LPS and induce the
secretion of pro-inflammatory cytokines like IL-1, IL-6 and
TNF-α from macrophages and adipocytes; thus promoting the
liver disease [34]. A number of studies have shown that
Kupffer cells play a pivotal role in the development of NAFLD
involving TLR4 response to LPS and the consequent activation
of Kupffer cell to release inflammatory cytokines [35-37]. In
agreement, mice lacking TLR4 were less likely to develop
NAFLD and were insulin resistance [38-40]. In the present
study, we observed a significant up-regulation of TNF-α, IL-6,
IL-1β in the liver of P. gingivalis administered mice. TNF-α is
a key inflammatory mediator and can be secreted directly by
hepatic cells and Kupffer cells [41]. Both human and animal
studies have confirmed the role of TNF-α in the development
of NAFLD and non-alcoholic steatohepatitis [42]. Moreover, a

Ren/Ding/Yu/Zhou/Yu

1606 Biomed Res 2018 Volume 29 Issue 8



study using the rat periodontitis model found that after chronic
administration of LPS from Escherichia coli and Streptomyces
griseus proteases, rats developed periodontitis and the liver
manifested steatosis, with inflammation and fibrosis following
the production of TNF-α in the liver [43]. As a powerful
mediator in the acute phase response of hepatocytes, IL-6 is
generated by a number of cells including activated
macrophages and lymphocytes [44]. The secretion of IL-6 is
induced by IL-1 and TNF-α. In turn, IL-6 is able to regulate the
production of IL-1, by activating the secretion of the IL-1
receptor antagonist and TNF-α directly [45]. IL-6 is therefore a
key to local pathological processes as well as systemic
inflammation. Mas et al. stated that IL-6-deficient mice
showed a reduction in diet-induced non-alcoholic
steatohepatitis in comparison with controls [46]. Further, IL-6
accumulated in the livers of patients with non-alcoholic
steatohepatitis compared to control patients, suggesting a
positive relationship between IL-6 expression in the liver and
the degree of NAFLD [47]. In the case of IL-1β, an in vivo
study has shown that IL-1β deficient mice had a marked
reduction in the development of steatosis to steatohepatitis and
liver fibrosis [48]. Thereby demonstrating the important role
for IL-1β in the promotion of liver disease. Apart from the up-
regulation of pro-inflammatory cytokines, we also observed the
presence of diffuse micro vesicular steatosis in the majority of
hepatocytes in the P. gingivalis group. Micro vesicular steatosis
has been implicated in the advanced histology of NAFLD. A
clinical trial has demonstrated the association between micro
vesicular steatosis and hepatocyte injury including the presence
of steatosis, ballooning cell injury and fibrosis [49]. Based on
our results, we propose that P. gingivalis participates in the
development of liver disease by activating the production of
pro-inflammatory cytokines including TNF-α, IL-1β and IL-6
in the liver. However, the precise mechanism of P. gingivalis
mediated pathogenesis of liver disease is still unknown. As for
the liver, the levels of TNF-α, IL-1β and IL-6 were
significantly up-regulated in the spleen of mice following oral
administration of P. gingivali. Also histological changes were
observed in this tissue. The spleen is the largest peripheral
lymphoid organ, composed of two distinct components: the
white and red pulp. The white pulp is made up of lymphoid
tissue, mostly lymphocytes (T cells and B cells) and
macrophages, while the red pulp is composed of parenchyma
and lots of vascular sinuses and sinusoids [50]. The white pulp
is thus regarded as the main site of immunological function in
the spleen. The spleen interacts with the circulatory,
reticuloendothelial, and immune systems and is key to
developing an immune response to antigens. As the first line of
defence, the spleen is capable of recognising specific PAMPS
such as LPS. Moreover, the spleen is considered a reservoir for
inflammatory monocytes [51,52]. A study in vivo showed that
LPS from Escherichia coli could activate dendritic cells of the
spleen and elevate the expression of pro-inflammatory
cytokines including IL-6, interleukin 12 p40, and TNF-α
compared to the control group [53]. Another study reported
that pro-inflammatory cytokines IL-6 and TNF-α and the anti-
inflammatory cytokine IL-10 were secreted locally in the
spleen after LPS injection [54]. In addition, Semaeva et al.

found that during LPS-induced inflammation, the spleen
showed a significant efflux of lymphocytes and up-regulation
of pro-inflammatory cytokines released into the systemic
circulation through the isolation of spleen lymph [55]; thus
confirming the central role of the spleen in a systemic immune
reaction. There are some limitations to our study. Histological
changes in the liver were for example examined by
haematoxylin and eosin staining which may have
underestimated the appearance of micro vesicular steatosis.
Compared to haematoxylin and eosin stain, fat-specific oil red
O stain would have been better for the purpose of our study.
Future work is needed to determine whether the oral
administration of P. gingivalis changes the expression of
hepatic injury markers including aspartate aminotransferase,
alanine aminotransferase, and lactate dehydrogenase.
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