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Abstract

One of the most significant indicators of heart disease is arrhythmia. Detection of arrhythmias plays an
important role in the prediction of possible cardiac failure. This study aimed to find an efficient
machine-learning method for arrhythmia classification by applying feature extraction, dimension
reduction and classification techniques. The arrhythmia classification model evaluation was achieved in
a three-step process. In the first step, the statistical and temporal features for one heartbeat were
calculated. In the second, Genetic Algorithms (GAs), Independent Component Analysis (ICA) and
Principal Component Analysis (PCA) were used for feature size reduction. In the last step, Decision Tree
(DT), Support Vector Machine (SVM), Neural Network (NN) and K-Nearest Neighbour (K-NN)
classification methods were employed for classification. The proposed classification scheme categorizes
nine types of Electrocardiogram (ECG) beats. The experimental results were compared in terms of
sensitivity, specificity and accuracy performance metrics. The K-NN classifier attained classification
accuracy rates of 98.86% and 99.11% using PCA and ICA features. The SVM classifier achieved its best
classification accuracy rate of 98.92% using statistical and temporal features. The K-NN classifier
feeding genetic algorithm features achieved the highest classification accuracy, sensitivity, and specificity
rates of 99.30%, 98.84% and 98.40%, respectively. The results demonstrated that the proposed
approach had the ability to distinguish ECG arrhythmias with acceptable classification accuracy.
Furthermore, the proposed approach can be used to support the cardiologist in the detection of cardiac
disorders.
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Introduction
Electrocardiogram (ECG) signals show electrical activity of
the heart. The signals are used for early diagnosis of heart
abnormalities and record changes in the heart [1,2]. Heart
arrhythmias occur with deviation from the normal
physiological behaviour of the heart. They are usually
associated with abnormal pumping function and are caused by
any interruption in the regularity, rate, or conduction of the
electrical impulse of heart. Arrhythmias decrease the quality of
life for the patient and can even cause sudden death [1,3]. The
automatic separation of ECG heartbeats into sub-categories can
be used in computer-aided diagnosis. It reduces the time spent
by cardiologists on the analysis of these records. An effective
ECG heart beat classification generally includes three
important modules: feature extraction (calculation), feature
selection (dimension reduction) and construct classifier
scheme. Feature extraction and reduction are two important
steps as they frequently affect the classification performance of

any heartbeat classification system. Consequently, the main
tasks of arrhythmia classification problems are the extraction
of adequate features and the reduction of their sizes for
classifiers in order to accomplish optimal classification results
[4].

Studies indicate that various feature extraction, dimensionality
reduction and classification methods have successfully
implemented arrhythmia classification and other pattern
recognition problems. The feature extraction methods include
vector quantization, the Lyapunov exponent, Wavelet
Transform (WT), spectral correlation, statistical methods, and
the Fourier transform [3-13]. The PCA, GA, ICA and Self-
Organizing Map (SOM) methods were used for dimensionality
reduction [1,3,4,9,10,14-19]. Researchers have extensively
used NN, SVM, DT, logistic regression, modified artificial bee
colony algorithm, classification and regression tree, Neuro-
fuzzy system, and K-NN classification methods
[3,4,8-11,13,17,20-31].

ISSN 0970-938X
www.biomedres.info

Biomed Res 2017 Volume 28 Issue 17 7594

Biomedical Research 2017; 28 (17): 7594-7603



Das et al. proposed an ECG classification method using the
Stockwell transform (S-transform) in their study. The S-
transform was used for the calculation of morphological
features. NN and SVM classification methods were employed
as classifiers [20]. Thomas et al. used features calculated with
WT for ECG classification. A multi-layered NN classifier was
used in their study. The performance of the proposed feature
set was compared with the features extracted by Discrete
Wavelet Transform (DWT) sub-band decomposition in the
QRS complex. One normal and four abnormal beats were
classified in the study [11]. Dilmac et al. used a modified bee
colony algorithm to classify ECG beats. In their study, the
morphological attributes of the QRS complex and the time
interval between heartbeats were used as features. Three beat
types taken from the MIT-BIH arrhythmia database were
classified. The obtained results were compared with several
classifiers used in the literature [29]. Khalaf et al. proposed a
model for the classification of ECG arrhythmias. Spectral
correlation and PCA were used for feature extraction and SVM
was used as a classifier in the study. For the experimental
results, they used five beat types [3]. In another study, the
authors used hermit transformation coefficients and R-R time
intervals as features [21]. Chazal et al. used ECG
morphological information and R-R time intervals as features
in their work [32]. Liu et al. proposed a dictionary learning
algorithm that employed k-medoids clustering optimized by k-
means++. They used a vector quantization algorithm for
feature extraction. In the study, 1200 beats of eight types from
different databases in the MIT-BIH were taken for the
experimental results [5]. Nazarahari et al. used wavelet
functions to calculate features for the classification of ECG
beats. They used a multi-layered NN as a classifier and PCA
for dimension reduction. In their study, one normal and five
abnormal beat types were classified and the results compared
[9]. In another study, the authors proposed a Continuous
Wavelet Transform (CWT) based approach for ECG
arrhythmia classification. They used a GA to develop a new
WT-based classifier [10]. Sumathi et al. proposed a hybrid
method using ANFIS which analyzed the ECG signal on the
basis of symlet wavelets. They extracted the parameters
associated with dangerous heart disease and used these
parameters in ANFIS to classify five types of ECG beats [8].

Melgani et al. focused on a SVM-based approach to automatic
diagnosis of ECG beats in their study. In addition, the Particle
Swarm Optimization (PSO) method was used and the ability of
the SVM algorithm to generalize was advanced [25]. Güler et
al. used a combined NN to classify ECG beats. The ECG
signal was decomposed using WT for the time-frequency
representation in the study. They calculated the statistical
values representing the distribution and classified four beat
types [7]. Engin applied neuro-fuzzy networks for ECG beat
classification. He used higher-order cumulants, autoregressive
model coefficients and WT variances as features for
arrhythmia recognition. Four types of beats were used for the
experimental results [23]. Osowski et al. focused on a fuzzy-
hybrid NN for ECG arrhythmia classification. They used
Gustafsol-Kessel algorithms for self-organizing the NN [33].

In a more recent work, Premature Ventricular Contraction
(PVC) was classified through visual features extracted from a
considerable set of ECG signals. The authors analyzed time
series features with respect to the classification performance of
PVC arrhythmia. The performance evaluation was also
conducted on the effects of some dimension reduction methods
[1]. All these studies were based on ECG signals provided by
the MIT-BIH arrhythmia database for their experimental tests
[34].

A whole heartbeat was used for feature extraction in the studies
related to arrhythmia classification. However, a heartbeat
contains information about different characteristic (P waves,
the QRS complex, T and U waves) [4,35]. In this study, one
beat signal was divided into four equal sections and new
statistics-based features were calculated to reveal this
information. These new features were used in the classification
approach. In order to test the proposed approach, nine types of
ECG beats taken from the MIT-BIH arrhythmia database were
used [34]. Test results show that the proposed approach
attained classification accuracy rates of 98.86% using a K-NN
classifier. Subsequently, different dimension reduction
algorithms were used in order to determine the most effective
features, and the classification performance was increased to
99.30%.

Materials and Methods
Figure 1 demonstrates a block diagram of the heartbeat
classification scheme proposed in this study. The noise and
fluctuations were removed from the signal in the pre-
processing step.

Figure 1. Block diagram of the proposed heartbeat classification
scheme.

The signal was parsed to beats in the beat-parsing step.
Statistical and time interval features of the signal (whole beat
and four equal sections) were calculated in the feature-
extraction step. Three different dimension reduction algorithms
were performed for the calculated features. The PCA and ICA
were implemented to decrease the size of the feature vector.
The GA was used to select the best features to represent all the
features. In this step, parameter optimization was performed in
order to calculate the parameters achieving better results. In the
classification step, the DT, SVM, K-NN, and NN algorithms
were employed, their results were compared, and the

Kaya/Pehlivan/Tenekeci

7595 Biomed Res 2017 Volume 28 Issue 17



classification scheme achieving the best results was
determined.

ECG database
The study employed a data set of 48 signals obtained from the
MIT-BIH arrhythmia database [34,36]. Each signal in the set,
which was 30 min in duration and included two important
leads (i.e., Lead II and a modified one), was sampled at 360
Hz. 23 files of signals were randomly selected, which were
supposed to represent routine clinical records. The remaining
25 files were chosen associated with rare complex junctional,
supraventricular and ventricular arrhythmias. The database was
annotated with beat label and timing information. In particular,
the labels were used to determine the position of the beats
contained by the signal files. A random selection procedure
was used in this work. This included a total of 6318 samples
for nine different types of ECG beats in the MIT-BIH
arrhythmia database. These typical ECG beats are left bundle
branch block (L), premature ventricular contraction (V), right
bundle branch block (R), paced beat (P or /), fusion of paced
and normal beat (f), fusion of ventricular and normal beat (F),
ventricular escape beat (E), aberrated atrial premature beat (a),
and normal beat (N). When there were more than 1000 samples
for one beat type in database, 1000 samples were selected,
otherwise all samples were selected.

Pre-processing
The oscillations in the ECG signals lead to an undesirable
effect on the features calculated for them, decreasing the
performance of the signal processing algorithms [2,37]. A
particular type of ECG signals recorded from the people can
exhibit notable differences. Noises were generally found in the
signals recorded during the patient’s natural daily behaviour
such as breathing, coughing, and bending. The normalization
and pre-processing operations performed on the signal remove
the noise and decrease its effects on the calculated features.

In this work, setting the mean of the ECG signal to 0, the
calculation load of the mathematical operation is reduced. The
zero-mean signal y (t), t=1, 2, … , L was calculated by
equation (1): y (t)=x (t)-x̄------(1)

Where x̄ corresponds to the arithmetic mean of the raw ECG of
x (t), t=1, 2, … , L and L is the signal length.

In the next step, using a cascade filter, frequency components
below 0.5 and 2 Hz are removed from the signal of y (t) and
thus the baseline wander is eliminated. The baseline wander
usually has the frequency components of below 0.5 Hz.
However, given some situations such as a stress test, the
components can have a higher frequency [1]. Therefore, the
upper bound of the frequency is limited to 2 Hz. Figure 2
shows (a) The raw signal; (b) Cascade filter result; (c) Filtered
signal of the first 14 seconds of signal file 203. In Figure 2 (c),
the baseline wander was subtracted from the signal to obtain a
smoother baseline.

Figure 2. (a) Raw signal, (b) cascade filter result and (c) filtered
signal.

Beat parsing
Every beat in the ECG must be separated and constructed in a
single beat format before feature extraction. In accordance with
to the location of the QRS complex, the ECG signal is used to
extract window length of 200 points for each beat [1]. These
points are established on the left and right sides of the R point,
respectively with 99 and 100 ones, and the remaining one point
is done on the R point itself. With the help of the annotation
files of the MIT-BIH database, the location of the R point was
gathered for the related beat.

Feature extraction
Subspace domain features, morphological features, and
statistics-based features are usually preferred as features for
arrhythmia classification [8-11,20,29,31].

In this study, amplitude values of 200 sample points gathered
in the beat-parsing step were used to calculate the statistical
features. The skewness, kurtosis, distribution range,
interquartile range, standard deviation, and average statistical
features were calculated for these values.

These features were calculated over the entire beat and each of
the four equal-width regions are shown in Figure 3. Dashed
lines in the figure indicate the border of the region.

The first region border ends approximately at the top of the P
wave, the second region border ends at the R point, and the
third region border ends approximately at the T wave.

These features were calculated as in equations (2-7):

�������� = ∑� = 1� �� − � 3∑� = 1� �� − � 3 (2)
�������� = ∑� = 1� �� − � 4∑� = 1� �� − � 4 (3)
Range=Maximum (xi)-Minimum (xi), i=1…n (4)
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Interquartile range=Q3-Q1 (5)

��������   ��������� = ∑� = 1� �� − � 2� (6)
������� � = ∑� = 1� ��� (7)
Where xi is the ith sample value, n is the sample count, and x̄ is
the mean of the examples.

Figure 3. Calculating features from one beat and its sections.

The distribution range is calculated as the difference between
the largest and smallest of these values. The interquartile range
is a statistical measure of dispersion and is equal to the
difference between the lower (Q1) and upper (Q3) quartiles.
The quartiles split a rank-ordered data set into four equal

fragments. The values that split each fragment are called the
first, second, and third quartiles and they are represented by
Q1, Q2 and Q3, respectively. The standard deviation is a
measure of the statistical distribution of the data and equal to
the square root of the variance. Table 1 shows the calculated
statistical features. In this work, the time interval for the active
beat between the previous and next beat was used as a feature.
For this purpose, the R-R previous (RRP) and R-R after (RRA)
values were calculated (Table 2). After this addition, the size of
the feature vector was identified as 32.

Performance measures
Sensitivity, specificity and accuracy performance metrics were
used to compare classification results. Although the accuracy
metric was a single value in the multi-class classification,
sensitivity and specificity metrics were not single values and
were calculated individually by each class. Equations (8-10)
show the performance measures for multi-class classification.������������ =   ������+∑��� (8)
������������ =   ������+∑��� (9)
�������� =   ∑� = 19 ��������� �� ����� ����� (10)
Where the subscript i represents the class label, TP symbolizes
the true positive, FP symbolizes the false positive, and FN
symbolizes the false negative for each class.

Table 1. Calculated statistical features.

Statistical features 

Feature Skewness Kurtosis Range Interquartile range Standard deviation Mean

Whole beat SKEW0 KURT0 RANG0 IQR0 STD0 MEA0

Section 1 SKEW1 KURT1 RANG1 IQR1 STD1 MEA1

Section 2 SKEW2 KURT2 RANG2 IQR2 STD2 MEA2

Section 3 SKEW3 KURT3 RANG3 IQR3 STD3 MEA3

Section 4 SKEW4 KURT4 RANG4 IQR4 STD4 MEA4

Table 2. Calculated time-related features.

Time-related features

Feature R-R Previous R-R After

Whole beat RRP RRA

Results
The performance of heartbeat classification systems depended
on several important factors including classification methods
applied, the quality of the ECG signal, calculated features to

represent the beat, and the test data used in the training of
classification algorithms. ECG signals used in the tests were
taken from the MIT-BIH arrhythmia database. The
classification performance of the proposed ECG beat
classification system was validated by a total number of 6318
beats of the nine most common ECG beat types labelled in the
dataset. These beats consist of 1000 N samples, 1000 L
samples, 1000 R samples, 1000 V samples, 1000 P (/) samples,
802 F samples, 260 f samples, 150 a samples and 106 E
samples.
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All experiments were performed using the MATLAB 2015a.
We used 10-fold cross-validation method for training and
testing the classifier in the study. The overall performance of
the classifiers was assessed by calculating the average of the
10-fold cross-validations. The dataset was randomly split into
10 mutually exclusive subsets of approximately the same size
in 10-fold cross-validation.

Each part was tested and trained 10 times. At each iteration,
the classifier was trained on 9 subsets and tested on one subset.
The estimate of accuracy was the overall number of accurate
classified samples, divided by the total number of samples in
the dataset [38].

Thus, the positive or negative effects of some samples in the
training process were eliminated and test results were
standardized.

In the experiments, NN, K-NN, DT, and SVM classification
methods were used to test the classification performance. The
results obtained, especially from the K-NN classifier, were at
acceptable levels.

The accuracy, average specificity, and average sensitivity
values were calculated using 10-fold cross-validation in order
to evaluate the performance of the classification algorithms.In
the study, classification algorithms first fed 32 statistical and
time-domain features and then, PCA, ICA and GA dimension
reduction algorithms were applied to the feature set and their
results were fed to the classifiers.

Results for statistical and time-domain features
A heartbeat has fiducial points, namely P, QRS, T and U
waves. The shapes of these waves are of great importance for
the recognition of arrhythmia. When defining the calculated
features, an attempt was made to determine the features
carrying more information about these waves.

Skewness is a measure of the symmetry of the probability
distribution of random variables, or data sets, on either side of
its mean. Kurtosis is a measure of the peakedness of the
probability distribution of random variables, or data sets. The
R-R interval is a time-based feature indicating the time
between two beats (two R points).

Figures 4 and 5 illustrate the distribution of skewness and
kurtosis features and the distribution of kurtosis and R-R after
features, respectively, calculated using the whole beat. Even
when used alone, these three features revealed a significant
clustering between classes.

When Figure 4 is examined, it can be seen that the SKEW0
and KURT0 features separate successfully the R (right bundle
branch block) beats from the other classes.

Similarly, in Figure 5, the RRA interval and KURT0 features
cluster the N beats successfully.

Figure 4. Distribution of SKEW0 and KURT0 features calculated
using a whole beat.

In this stage of the study, all 32 features were used in four
classifiers to evaluate the performance. K-NN classifier was
tested and an accuracy rate of 98.86% was achieved as a result
of the classification process. In the classification step with K-
NN, the K parameter (the number of the nearest neighbours in
the data to discover for classifying each sample when
predicting) was subjected to testing to give the best
classification performance. It was determined as K=1 after the
tests. The numbers 1 to 15 were applied as a K value. The
Euclidean distance function was used with the K-NN
classification method.

Figure 5. Distribution of RRA and KURT0 features.

The experiments were also applied using NN, SVM and DT
classifiers in order to compare the results obtained in the tests.
The NN test had one hidden layer and the size was determined
as 20 with the grid search. Another grid search method was
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used to determine the parameters of the SVM classifier and the
polynomial kernel function was chosen, the degree was set as
3, gamma as 1 and C as 1. For the DT classification
experiments, the criterion parameter was set as gain ratio and
the gain parameter was set as 0.1 for pruning branches. Table 3
demonstrates the results obtained by the classifiers using 32
statistical and temporal features. As shown in Table 3, the
SVM classifier achieved the highest success, while the DT
classifiers achieved lower results than the other classifiers. The
NN and K-NN classifiers achieved the same classification
accuracy.

Table 3. Classification results for statistical and temporal features.

 Sensitivity Specificity Accuracy

NN 0.9839 0.9726 0.9886

K-NN 0.9793 0.9779 0.9886

SVM 0.9843 0.9758 0.9892

DT 0.6393 0.6758 0.7094

Results for features gathered dimension reduction
methods
Feature selection and extraction are of great importance in size
reduction. Each additional feature used in the classification
scheme will increase the cost of the calculation and the runtime
of the system. Therefore, it is important to develop the system
and model using fewer features. In this stage of the study,
dimension reduction operations were investigated. The
dimension reduction process was carried out using two
different techniques. In the first, PCA and ICA were applied to
move data to different spaces and calculate the new features
representing the data. New features were calculated using
mathematical models and the size of the feature vector was
reduced. In the second technique, the available features best
representing the data were selected using a GA for this
purpose.

The first dimension reduction method implemented in this
study was PCA. The grid search was used to calculate the best
Principal Component (PC) count. The K-NN classifier was
used as the evaluation function in the search process in order to
evaluate each PC count. This was investigated by checking the
accuracy of the classification and corresponding PC count in
each step. The highest classification performance was achieved
for the PC number of 17. Figure 6 shows the distribution of the
first two PCs calculated by PCA. Table 4 shows the
classification results achieved by the classifiers using PCs as
input vectors.

The second dimension reduction method used in this study was
ICA. The classification performance for Independent
Components (IC’s) between 1 and 32 was evaluated to
represent the available feature set. The IC count was found to
be 9 as a result of the search, and this value was used in the
following calculations. The fascICA algorithm was used to
calculate the ICs [39].

Figure 6. The distribution of the first two PCs.

Table 4. Calculated performance metrics for PCs as input feature
vectors.

 Sensitivity Specificity Accuracy

NN 0.9796 0.978 0.9886

K-NN 0.9793 0.9779 0.9886

SVM 0.9841 0.9767 0.9872

DT 0.8414 0.858 0.855

At the calculation step, the neg-entropy approach function and
alpha parameter were set as logcosh and 1, respectively. The
maximum number of iteration parameters was set as 200.
Figure 7 shows the distribution of the first two ICs. Table 5
shows the classification results achieved by the classifiers
using ICs as input vectors.

When the classifiers were fed with the ICs, the K-NN classifier
achieved the best classification accuracy, while the NN and
SVM achieved approximately the same results and the DT
achieved the worst result.

Finally, a GA was applied to diminish the size of the feature
vector consisting of 32 features. The standard GA was applied
using a tournament-based selection strategy.

The GA selected 17 features, as shown in Table 6. The
selection status of the features selected by the GA is marked as
1.0 in the table. Table 7 shows the classification results
achieved by the classifiers using features selected by the GA as
input vector.

The study achieved the highest classification accuracy
(99.30%) with the K-NN classifier using selected features of
the GA.
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Figure 7. The distribution of the first two ICs.

Table 5. Calculated performance metrics for ICs as input feature
vectors.

 Sensitivity Specificity Accuracy

NN 0.9832 0.9681 0.9859

K-NN 0.9849 0.9826 0.9911

SVM 0.9797 0.9701 0.985

DT 0.8586 0.9114 0.9139

Table 6. The features selected by the GA.

Feature name Selection status Feature name Selection status

SKEW0 0 STD2 1

KURT0 0 MEA2 1

RANG0 0 SKEW3 1

IQR0 1 KURT3 0

STD0 0 RANG3 0

MEA0 1 IQR3 1

SKEW1 0 STD3 1

KURT1 1 MEA3 1

RANG1 1 SKEW4 0

IQR1 0 KURT4 0

STD1 1 RANG4 0

MEA1 1 IQR4 1

SKEW2 1 STD4 0

KURT2 0 MEA4 1

RANG2 0 RRP 1

IQR2 0 RRA 1

Table 7. Classification results for the features selected by the GA as
input vector.

 Sensitivity Specificity Accuracy

NN 0.9791 0.9695 0.9865

K-NN 0.9884 0.984 0.993

SVM 0.9813 0.9719 0.988

DT 0.8175 0.8042 0.9465

Discussion
The K-NN classifier attained the highest classification
performance for all reduced input vectors and achieved the best
accuracy value of 99.30% using the GA-selected features. The
NN attained the highest classification accuracy of 98.86%
using PCs and statistical features. The K-NN and NN obtained
the same results using statistical features as input vectors. The
DT classifier achieved a poorer performance than other
classifiers. When PCs were used as input vectors,
approximately the same results were attained as the classifiers
using statistical features as input. When ICs were used as input
vectors, the K-NN again attained the maximum classification
accuracy.

Classification times (s) for input vectors using classifiers (for
the 10-fold-cross-validation) were measured and were given in
Table 8. It was observed that classification time changed by
input vector size and classifier architecture. On the basis of the
classifier, the NN was the slowest classifier for all feature sets
because of the computational load. Table 9 summarizes the
results obtained with the proposed approach and the reported
findings in other arrhythmia classification approaches in the
literature.

Table 8. Classification time in seconds for classifiers using different
input vectors.

 32 features PCs ICs GA selected features

K-NN 3.91 3.452 3.216 3.647

NN 741.464 485.161 370.835 432.13

SVM 3.958 2.944 2.598 2.762

DT 6.053 3.957 2.268 3.987

The performance metrics reported by other studies are shown
in the table. Most of the works dealt with accuracy metrics.
Oster et al. declared the F1 score to be a performance metric
[40]. Ceylan et al. classified ten different types of arrhythmia
in their study, which used 173 beat in experimental tests.
However, this number can be considered as insufficient to
classify 10 different arrhythmias [41]. In most of the studies,
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the authors used NN and NN-based approaches
[7-11,21,23,33,41].

Table 9. Summary of the arrhythmia classifiers and classification performance obtained (%).

Researchers Classifiers Acc. Sen. Spe. Arrh. count

Liu et al. [5] Vector quantization and k-means++ 94.6 - - 8

Thomas et al. [11] NN 94.64 88.6 96.18 5

Dilmac et al. [29] Artificial bee colony 99.24 - - 3

Nazarahari et al. [9] NN 98.77 - - 6

Khalaf et al. [3] Spectral correlation and SVM 98.6 99.2 99.7 5

Escalona-Morán et al. [28] Logistic Regression 98.43 - 97.75 5

Oster et al. [40] Kalman Filters - 98.3 (F1) - 4

Paul et al. [10] Probabilistic NN - 88.33 - 3

Alshraideh et al. [27] DT 98.29 - - 7

Sumathi et al. [8] ANFIS - - 99.52 6

Ceylan et al. [41] Fuzzy NN 99 - - 10

Melgani et al. [25] SVM 85.7 - - -

Jiang et al. [21] NN 98.1 86.6 95.8 5

Güler et al. [7] Combined NN 96.94 - 97.78 4

Engin et al. [23] Fuzzy NN 98 - - 4

Osowski et al. [33] Fuzzy hybrid NN 96 - - 6

Amuthadevi [4] CART, Nive Bayes, K-NN 98 - - 2

Proposed approach K-NN+GA 99.3 98.84 98.4 9

K-NN+ICA 99.11 98.49 98.26

K-NN+PCA 98.86 97.93 97.79

SVM+Stat. Feat. 98.92 98.43 97.58

Dilmac et al. achieved the results closest to the present findings
with the classification accuracy of 99.24%, although the
authors obtained this result by classifying three types of
arrhythmia [29]. In another successful study, instead of
accuracy, the authors reported specificity performance criteria
and achieved specificity of 99.52% by classifying six types of
arrhythmia [8]. Malgani et al. conducted an SVM-based
approach and obtained the lowest classification results
compared to the other studies [25].

As can be seen from Table 9, the proposed approach, taking
into account the number of arrhythmias classified and the
classification accuracy achieved, obtained a higher
performance than the other studies dealing with arrhythmia
classification. The calculated statistical and temporal feature
vectors (32 features) were sufficient for achieving this success
in arrhythmia classification. The GA was found to be suitable
for feature selection on this topic. The K-NN classifier
achieved the best performance compared to other classifiers
and the computation times were among the fastest algorithms
for all the feature sets.

Conclusions
This study proposed a new classification scheme and feature
set to detect nine different types of arrhythmia in the MIT-BIH
arrhythmia database. In order to achieve this classification
process, statistical and temporal features were extracted from
the time series of one beat of an ECG signal. The one beat
ECG signal (200 samples) was divided into four equal sections
and six different statistical attributes were calculated for each
section. Two temporal features were added to this feature set
and it consisted of a total of 32 features. The number of these
features was reduced using dimensionality reduction methods
and the test results for all feature sets were compared. The
features selected by the GA achieved a better classification
performance than the other feature sets. The proposed
classification schema and feature sets can be used for a
computer-aided diagnosis system for arrhythmia classification.
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