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Abstract

In this work, a wearable clinical prototype with patient interface for microwave breast cancer detection
is designed. It operates in the 2-4 GHz range and contains 16 wideband sensors embedded in a
hemispherical dielectric radome. The cancer cell of size below 5 mm are detected and measured from
breast phantom. The subsequent scan acts as a calibration signal and the skin reflections will be
suppressed if the skin contour remains consistent throughout the rotation. However, the scattering
response from within the breast also becomes distorted in the process as twin targets are often
reconstructed from single scatterers and significant targets located near the axis of rotation are often
eliminated. The proposed work designed to perform multistatic signal calibration with minimal
distortion of internal breast scatterers; The proposed work offers superior tumor identification,
accurate localization, and strong artifact resistance over existing wavelet algorithms. In this paper we
investigate how signal processing can be accelerated for diagnosis by using NN. The various scenarios:
homogenous and heterogeneous breast models with varied densities, combining both ideal and practical
signal analysis methods were taken. Extensive simulations and analyses using backscattered signals
received from wearable breast models were conducted to validate the performance of the proposed
algorithm. From the results, we can measure the cell with 95.6% in accuracy.
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Introduction
Microwave imaging techniques have been proposed as a
complementary modality to the standard X-ray mammography
for breast cancer screening and detection. Based on an inherent
contrast in the dielectric properties of healthy and malignant
breast tissues, microwave methods have the potential to
discriminate between cancerous growths and healthy or benign
tissues. Unlike mammography, microwave techniques do not
use ionizing radiation and thus breast scans can safely be
performed frequently, making them excellent candidates for
diagnostic breast screening. Microwave techniques are
typically categorized into two subtypes: microwave radar and
microwave tomography. These techniques can be performed
with physical measurements in either the time or the frequency
domain. Time-domain recordings allow collection of data over
a wide frequency band with one pulse, allowing for potentially
faster recordings; however, they suffer from poorer signal to
noise ratios (SNR) than frequency domain methods. In recent
research on microwave breast cancer detection, multiple
experimental systems have evolved to the stage of clinical
measurements. Such studies involve performing breast scans
on women, either healthy volunteers or those who have been
diagnosed with breast cancer. In our work, we use a time-

domain radar system for breast health monitoring. The long-
term aim of the research is a device for breast monitoring as an
early warning indicator for cancer that uses several metrics to
assess breast health. Such an application would be of particular
use with patients who are at high risk of developing breast
cancer.

Related Works
In previous studies, we have presented an initial clinical
prototype for feasibility tests [1-3], This table-based prototype
was composed of a radome with embedded antennas. During a
scan, patients lay on the table in the prone position with their
breast in the radome. Using the table-based prototype, we
performed breast scans on a volunteer daily over the course of
one month [4,5]. This study helped identify avenues towards
an improved prototype. Namely, we now aim to develop a
prototype that does not require the table setup, thus making it
more portable and compact. A more cost effective solution is
also beneficial, in order to enable wider accessibility. The
dielectric properties of the skin can be significantly higher than
the internal breast tissues [6-8], generating unwanted
reflections and multipath effects. These skin reflections need to
be sufficiently suppressed in both monostatic and multistatic
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radar data in order to correctly image targets from within the
breast. The scattering effects of the skin are commonly filtered
using a calibration signal, often approximated by number of
recorded signals which experience similar skin propagation as
well as exhibiting sufficiently varying internal breast scattering
[9,10].

Previous skin calibration methods have filtered the skin
reflection via a time window [11-18]. The skin can be
temporally isolated from the target within monostatic signals
but this is not the case in a multistatic measurement system, as
the tumour scattering can be masked by reflections from the
skin and inter-antenna coupling [19]. Monostatic transducers
can be freely repositioned around the breast to generate
sufficient similar skin channels to aid in the calibration process
[20]. Within a multistatic array, however, the number of TX-
RX channels which undergo similar skin propagation and inter-
element coupling effects are often limited since the array
density is dictated by the size of the antenna elements. This
limitation has prompted the use of differential offset imaging
with multistatic scenarios in the literature; two scans of the
same breast are performed where the array is rotated between
scans [10,19].

Proposed Methodology
A description of the new, wearable prototype is provided. The
system operates based on the multi static radar principle. A
short-duration pulse (with frequency content in the 2-4 GHz
range) is generated on each clock cycle. It is then amplified
and transmitted, through a switching matrix, to a transmitting
antenna. The system is composed of a 16-element wideband
antenna array, which surrounds the breast under test. The wave
propagates through the breast tissues, scattering at each
interface of different tissue types. The resulting scattered wave
is collected at each of the 16 receiving antennas in turn. An
equivalent-time sampling oscilloscope (‘picoscope’) is used to
record the data, which is stored digitally. The switching matrix
then changes the transmitting antenna, and the recording
process is repeated until all possibilities have been cycled
through. A schematic of the measurement setup and its
proposed methodology overview is provided in Figure 1.

Figure 1. Methodology block diagram of cancer cell detection.

In this work, a wearable prototype is fabricated using the
monopole antennas. In particular, the wearable prototype is

composed of a 16-element antenna array, embedded in model.
The antennas are distributed asymmetrically around the bra
surface, to reduce imaging artifacts that can be induced by a
symmetric array. The antennas are located such that they are on
the inside of the model and will thus contact the skin. The
signal can be acquired by Efficient DR-DAQ system. This
arrangement removes any uncertainty regarding the breast
position relative to the array.

Signal Calibration Using Neural Network
Technique (SCNN)
The proposed signal processing technique is outlined in Figure
2. Multiple scans are performed on the same breast where the
entire M element array is repositioned via rotation between
scans. Now there are N(M × (M-1))/2 recorded channels
available for beam forming, where N is the number of scans.
The recorded data for a particular array position scan n is
denoted by Xn, whose columns Xijn contain the recorded
scattering at RX j when the breast is illuminated by TX i. In
this section we open by describing the NN based signal
calibration technique to isolate the scattering response from
inside the breast.

Figure 2. Proposed SSNN technique.

Signal reflections and mutual coupling must be suppressed in
each multiple signal path X(i,j,n) to extract the scattering
response from the internal breast tissue. At each repositioning
of the fixed-element array, we assume that the geometrical
arrangement results in consistent antenna coupling effects and
skin propagation among corresponding TX-RX signals, i.e.
between X(i,j,1), X(i,j,2),........ X(i,j,N). Other TX-RX signals
from intra-scan data may experience similar coupling and skin
scattering, particularly if they are geometrically similar to
another stable signal arrangement in the array, e.g. a pair of
stable signal paths whose antennas exhibit similar relative
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polarizations and phase centres are equidistant. These intra-
scan signals and the corresponding signal pairs present in the
other N-1 scan positions are collated into a group,that
correspond to the grouping stage in Figure 2. The goal of group
based signal processing, which directly operates on the
acquired reflected signal and the actual transmitted signal on
breast model. The signal processing sequence, Called Grouped
Filtering is applied in order to improve the signal strength of
the reflected signals. First, we correlate the reflected raw signal
Araw with the Grouped Filter signal GF. The GF is the
frequency based waveform to be expected at the DR-DAQ
receivers. The applied GF correlation has a length of few
samples and by a time reversal of the GF samples which
converts the correlation into a convolution.

AGF=GF*ARAW

In the second step, we generate the signal envelope AENV of
the Group filtered signal AGF by taking the absolute value of
the complex analytic signal.

AENV=|AGF+jAHIL|

Therefore, we convolute the input signal AGF with a special
set of HIL coefficients, in order to generate the approximated
Hilbert Transform.

AHIL=HIL*AGF

Per definition, the result AHIL is then taken as the imaginary
part and AGF as the real part of the analytic signal. The
absolute value of this signal is a good approximation of the
envelope signal AENV.���� = ���+ ����� = �2��+ �2���
In the next step, we reduce the envelope signal AENV to its
local maxima APEAK by comparing each sample value with
its adjacent signal values. Here, the signal values at peaks are
retained and all other samples are set to zero.

APEAK=localmax(AENV)

Finally, we convolute with an Optimal Pulse OP in order to
produce the output signal AOP. The final convolution shapes
the output signal optimally for the subsequent NN signal
calibration.

AOP=OP*APEAK

Our goal is to develop an automatic NN classification
algorithm that mimics the tumor cell analysis decision whether
a tumour is benign or malignant based only on the transmitted
and reflected a training image set with the corresponding
biopsy decisions. The standard procedure to train a classifier is
based on a given set of training data with corresponding true
labels. The classifier learning procedure finds a classifier
whose class predictions are most similar to the correct labels
that are provided along with the training data. The main
difficulty in our training algorithm is that we do not have direct
access to the signal-level decisions. We approach the benign/
malignant decision task, based on the two views, as a EM two
step procedure.

SCNN procedure
Input: pairs of feature vector (x1,cc, x1,mlo), …, (xn,cc, xn,mlo)
with corresponding binary labels z1, …, zn.

Output: model parameters wcc, wmlo and θ.

The EM Algorithm iterates between the two steps:

E-step: For every mammography-pair data (xt,cc, xt,cc)
compute:

���� = ���(��)�(��, �� = � ��, ��;���)�(��,��� = � ��,���;����)�(�� ��, ��, ��,���;���,����,� , �
= 0, 1; � = 0, 1; � = 1, ...,� .
M-step:

Update the view fusion parameter θ:

��� = ∑ � �� = 1 ����∑����� , � = 0, 1, � = 0, 1.
Apply gradient ascent to find wcc that maximizes:�(���) = ∑� ∑� = 0, 1(���0+ ���1)log�(��, �� = � ��, ��;���)��� ���+ �∑� (��10+ ��11− �(������, ��))��, ��
Apply gradient ascent to find wmlo that maximizes:�(����) = ∑� ∑� = 0, 1(��0�+ ��1�)log�(��,��� = � ��,���;����)���� ����+ �∑� (��01+ ��11− �(�������,���))��,���
In this work, we use a month-long measurement period as the
basis for our investigation. We perform daily measurements on
a healthy volunteer over the course of one menstrual cycle in
order to verify the repeatability of measurements and to
quantify the level of variation that the microwave system
records in response to healthy tissue fluctuations. We
conducted daily measurements on the volunteer with the
SSNN-based wearable prototype.

Results and Discussion
In this section, the data is examined directly based on the
collected signals. First, we compare the received signal
amplitudes from all transmit-receive antenna pairs of the table-
based prototype and the wearable prototype. The data sets are
obtained from breast scans of the right breast of the same
volunteer. For all scans with both prototypes, the signal
amplitude fed into the transmit antenna was constant.

From the plots in Figure 3, we see that the signal trends are
similar for each visit. In order to explore the removal of the
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direct pulse, surface wave, and skin reflection, Figure 3 also
plots two difference signals. The difference between the signal
from the given antenna pair for two volunteer scans (S2 and
S1) is shown, along with the difference between S2 and the
ultrasound signal scan (US). In both cases, the early-time
signal is significantly reduced. The two difference signals are
also closely matched in amplitude. Similar results are found for
the other antenna pairs. The monitoring application by its
design involves system calibration using patient scans.
However, at the onset of the screening history, in the absence
of earlier scans, calibration with ultrasound gel scans can
remove the majority of unwanted signal content.

Figure 3. Sample plots of aligned collected signals for each of the six
visit.

A summary chart is presented in Table 1, where the number of
antenna pairs that result in collected signals above three
threshold values (250 mV, 200 mV, and 100 mV) is listed.
These particular threshold values are chosen arbitrarily as an
example. High-amplitude signals can be used as an indicator of
the system performance: with the same input signal, higher
outputs represent lower overall path losses (due to any or all
of: less attenuation, fewer interfaces for scattering, improved
matching, better antenna efficiency, etc.). As can be seen from
Table 1, the wearable prototype leads to more antenna pairs
with high amplitude signals for all three thresholds.

Table 1. Comparison of the number of antenna pairs recording high
amplitude signals and antenna pairs with amplitude at or below noise
level.

>250 mV >200 mV >100 mV ≤ Noise

Table-Based 6 16 48 16

Wearable 8 23 51 0

To evaluate the effectiveness of the proposed algorithm is
written in MATLAB to generate the results of different
materials used in our experiment as tumour. Figure 4 shows the
measurements of the received signal response when the
antenna subjected in the normalized signal.

Figure 4. Skin propagation characteristics.

Figure 5: Measured sensitivity parameters.

We evaluated the algorithm performance using Receiver
Operator Characteristic (ROC) curves, calculating area under
the curve (AUC) and using the classification accuracy,
sensitivity and specificity measures. We examined our
classifier performance on the rotation invariant Curvelet
features. Due to differences in nature of the two types of breast
tissue (Fatty/Dense), different network architecture was
required for each type, and therefore each breast tissue
category was evaluated separately. Figure 5 shows the ROC
curves of the five classifiers we compared using the rotation

Yuvarani/Venkateswaran

Biomed Res- India 2016 Special Issue
Special Section: Computational Life Science and Smarter Technological Advancement

S156



invariant Curvelet features on one train-test split from the fatty
tissue. The Table 2 shows how cancer cells size evaluated from
existing and proposed signal (SSNN) to the actual size of the
cells. The SSNN methods applied to the collected data to avoid
the shortcomings of classical methods.

Table 2. Statistical values of existing and proposed algorithm based
signal for different size of cells.

Cancer
Cell Existing Accuracy Values Proposed Accuracy values

1 mm 2.063 4.927

2 mm 3.136 5.917

3 mm 4.5215 7.927

4 mm 5.274 8.17

5 mm 5.921 8.913

Conclusion
This work has introduced a clinical prototype for NN based
microwave breast cancer detection. The prototype has a
wearable interface, i.e., a bra that contains the antenna array.
The wearable prototype is worn with the antennas directly
contacting the skin, eliminating the need for a noisy medium,
and giving precise knowledge of the position and size of the
breast surface relative to the array. The system breast interface
of the wearable prototype is highly cost effective compared to
existing systems. We have performed signal processing with
the SSNN technique based wearable prototype and showed the
results for various categories. Future work, along the direction
of system improvement, includes integration of other hardware
components, a model with a wider coverage area and reduced
scanning time. Further, we will expand clinical testing to a
wider range of healthy volunteers (with varying breast size and
density) as well as breast cancer patients.
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