Drug delivery systems: Evolution and innovation.

Ethan Collins*

Department of Biomedical Engineering, Stanford University, California, USA

Introduction

This review delves into how nanocarriers are transforming cancer therapy, specifically focusing on precision delivery. It highlights the shift from traditional treatments to methods that specifically target cancer cells, minimizing harm to healthy tissue. What this really means is leveraging nanotechnology to improve therapeutic outcomes and reduce side effects, paving the way for more effective cancer management. [1]

Here's the thing: oral drug delivery systems are seeing huge advancements. This article explores the evolution from basic pills to sophisticated technologies like nanoparticles and intelligent capsules. The focus is on improving bioavailability, reducing dosing frequency, and enhancing patient compliance, making medication more effective and easier to take. [2]

The field of transdermal drug delivery is really picking up steam, with new mechanisms and technologies emerging. This paper covers everything from patches to microneedles, showing how drugs can be delivered through the skin more efficiently. The goal is to provide sustained drug release, avoid first-pass metabolism, and offer a non-invasive alternative to injections. [3]

When it comes to cancer gene therapy, nonviral delivery systems are gaining attention. This article explores innovative methods that bypass the safety concerns often associated with viral vectors. What this really means is developing safer, more controllable ways to introduce genetic material into cells, offering new hope for genebased cancer treatments. [4]

Smart drug delivery systems are a game-changer for cancer therapy. This review focuses on systems that can respond to specific triggers, like pH changes or temperature, within the tumor microenvironment. It's about delivering drugs precisely where and when they are needed, enhancing efficacy and reducing systemic toxicity. [5]

The success of mRNA vaccines, particularly during recent global health challenges, has brought delivery systems into the spotlight. This article explores the latest innovations in delivering mRNA effectively and safely. It highlights the critical role of lipid nanoparticles and other non-viral carriers in maximizing vaccine potency and

stability. [6]

Delivering drugs to the brain is notoriously difficult due to the blood-brain barrier. This paper discusses recent breakthroughs in overcoming these challenges to treat neurological disorders. It touches on strategies like nanotechnology, focused ultrasound, and modified drug carriers, aiming for enhanced therapeutic outcomes in conditions like Alzheimer's and Parkinson's. [7]

Pulmonary drug delivery offers a direct route for treating lung diseases, but it comes with its own set of hurdles. This article explores current strategies and emerging technologies designed to improve drug deposition and absorption in the lungs. We're talking about advancements in inhalers, nebulizers, and particle engineering for better targeted therapies. [8]

Microneedle-based drug delivery systems are revolutionizing how we treat skin conditions. This review discusses the latest developments, from dissolving microneedles to those that physically create pathways for drugs. The benefit here is targeted delivery, reduced pain compared to injections, and improved patient adherence for a range of dermatological issues. [9]

Implantable drug delivery systems are designed for sustained, long-term release, which is crucial for chronic conditions. This article reviews the latest innovations in these devices, from biodegradable implants to smart systems that can be programmed. The core idea is to provide consistent therapeutic levels, reduce the need for frequent dosing, and improve treatment adherence. [10]

Conclusion

Drug delivery systems are undergoing significant evolution, with various approaches emerging to enhance therapeutic outcomes across diverse medical needs. Nanocarriers are transforming cancer therapy by enabling precision delivery to target cancer cells, minimizing harm to healthy tissues and improving treatment efficacy. Oral drug delivery has advanced from basic pills to sophisticated nanoparticles and intelligent capsules, focusing on better bioavailability, reduced dosing frequency, and improved patient compliance. Transdermal drug delivery is seeing progress with patches

*Correspondence to: Ethan Collins, Department of Biomedical Engineering, Stanford University, California, USA. E-mail: ethan.collins@stanfordmed.edu

Received: 01-Aug-2025, Manuscript No. aajcrp-190; Editor assigned: 05-Aug-2025, Pre QC No. aajcrp-190 (PQ); Reviewed: 25-Aug-2025, QC No. aajcrp-190;

Revised: 03-Sep-2025, Manuscript No. aajcrp-190 (R); Published: 12-Sep-2025, DOI: 10.35841/aajcrp.7.3.190

and microneedles, offering sustained release, bypassing first-pass metabolism, and providing a non-invasive alternative to injections. For cancer gene therapy, nonviral delivery systems are gaining traction, providing safer and more controllable methods to introduce genetic material into cells. Smart drug delivery systems in cancer therapy respond to specific triggers within the tumor microenvironment, ensuring drugs are delivered precisely when and where needed, thereby boosting efficacy and reducing systemic toxicity. The success of mRNA vaccines has highlighted innovations in effective and safe mRNA delivery, with lipid nanoparticles playing a crucial role in vaccine potency and stability. Overcoming the blood-brain barrier for neurological disorders is seeing breakthroughs through nanotechnology and modified drug carriers. Pulmonary drug delivery is advancing with improved inhalers and nebulizers for targeted lung therapies. Microneedle-based systems offer targeted, less painful delivery for skin conditions, while implantable systems provide sustained, long-term drug release for chronic conditions. These developments collectively aim to make medication more effective, safer, and easier for patients.

References

Md N, Mohib U, Md SI. Nanocarriers as Drug Delivery Systems for Precision Cancer Therapy: A Comprehensive Review. Molecules. 2023;28:638.

- Yi-Tong Z, Rui S, Yong-Chun L. Current progress of oral drug delivery systems: From traditional to innovative technologies. J Control Release. 2022;349:382-402.
- Pranjali K, Shruti D, Ashlesha G. Recent Advances in Transdermal Drug Delivery Systems: An Insight into Mechanisms and Emerging Technologies. Pharmaceuticals. 2024;17:108.
- 4. Jia-wei H, Shu-yi W, Jing Z. Recent Advances in Nonviral Gene Delivery Systems for Cancer Gene Therapy. Front Pharmacol. 2021;12:660875.
- 5. Yu-Han Z, Meng-Yao T, Jing C. Smart drug delivery systems for cancer therapy. Acta Pharm Sin B. 2020;10:2096-2111.
- 6. Ming-Liang X, Yan-Wei J, Yue Z. Recent advances in mRNA vaccine delivery systems. Biomater Res. 2023;27:48.
- Haojie Z, Qianrui W, Yue L. Recent advances in brain drug delivery systems: *Enhancing therapeutic outcomes for neurological disorders. J Drug Deliv Sci Technol.* 2024;92:105295.
- 8. Min-Jie X, Jing-Yu W, Zhi-Feng Y. Pulmonary drug delivery systems for treating lung diseases: recent advances and challenges. *Drug Deliv.* 2022;29:3230-3248.
- Jiaojiao L, Jincheng F, Xudong S. Recent advances in microneedle-based drug delivery systems for treating skin diseases. J Mater Chem B. 2023;11:7922-7935.
- Yi-Qiang W, Hong-Guang L, Jing L. Recent advances in implantable drug delivery systems for long-term drug release. *J Control Release*. 2021;333:167-184.

Citation: Collins E. Drug delivery systems: Evolution and innovation. aajcrp. 2025;08(03):190.

aajcrp, Volume 8:3, 2025