Development and Sensory evaluation of functional probiotic yogurt fortification with Guava pulp

Madhu^{*}, Singh Neetu

Department of HDFS, Babashaheb Bhimrao Ambedkar (A central) University, Lucknow, UP, India

Abstract

Functional foods to promote gut health because gut is a target for the development of functional foods, because it acts as an interface between the diet and all other body functions. One of the most promising areas for the development of functional food components lies in the use of probiotics and prebiotics to modify the composition and the metabolic activity of the gut micro flora. Probiotic yogurt is defined as a live microbial food ingredient that confers a health benefit on the consumer. Probiotic yogurt fortification with guava pulps, increases the metabolic activities and absorption process of gut flora in intestine, and enhances the sensory properties.

Objectives: overall main target of the research work was to developed functional probiotic yogurt, and fortified with guava pulps which is a prebiotic and also a vitamin 'C' rich fruits and their sensory evaluations for consumer acceptability.

Methodology: live probiotic bacteria powder are used as culture for making probiotic yogurt and 2. Extracted guava pulps from guava fruits and then Probiotic yogurt fortified with guava pulp in 5 different ratios 0%, 10%, 20%, 30% and 40% finally developed functional probiotic yogurt fortification with guava pulps. 9 point hedonic rating scales are used for sensory evaluations.

Statistical analysis: The data was collected from different parts were analyzed on the software of SPSS.20 version.

Result: there was no significant difference in results fortified with different ratios of guava pulps but showed little better ratios of 30% and 40% guava pulps as comparisons to 10% and 20% ratios of guava pulps.

Conclusion: optimization of the desirable properties of the 30 and 40 would increase utilization and acceptance of functional probiotic yogurt fortification with guava pulps.

Keywords: Functional foods, Probiotics and Prebiotics, Guava pulps, Sensory evaluations

Accepted on 8th February, 2021

Introduction

Foods supported fruits and vegetables, like its juices and pulp represent a replacement potential carrier and source of probiotic microorganism. Yogurt, the simplest carrier of probiotics, traditionally is manufactured streptococcus thermophiles and lactobacillus deldrueckii ssp. Bulgaricus (L. bulgaricus) as starter cultures. raw and fermented fruits represent an excellent vehicle for probiotics due to Majority 70% of people in India do not consume enough micronutrients such as vitamins and minerals in day to day life. Micronutrient and macronutrient malnutrition, hidden hunger, is a serious health risk comes due to globally estimated due to deficiency of under nutrition to cause the deaths of between 3 and 5 million people per year. (FAO) Food fortification or enrichment is that the process of adding micronutrients (essential trace elements and vitamins) to food. As defined by the planet Health Organization (WHO)

and therefore the Food and Agricultural Organization of the United Nations (FAO), fortification refers to "the practice of deliberately increasing the content of an essential micronutrient, i.e. vitamins and minerals (including trace elements) during a food, so on improve the nutritional quality of the food supply and to supply a public health benefit with minimal risk to health", whereas enrichment is defined as "synonymous with fortification and refers to the addition of micronutrients to a food which are lost during processing". Pro means 'for' and bio means 'life' Probiotics is living microorganism or microscopic bacteria that are created by fermenting certain foods. There are many good bacteria in our body that are beneficial: these are mentioned as probiotics. "Probiotics can help enhance digestion and regulate the function of digestive tract when consumed regularly. Probiotic bacterial cultures are added to exploit, it makes it ferment and this fermentation gives the milk a creamy texture that we all know as yogurt. The

Citation: Madhu, Neetu S. Development and Sensory evaluation of functional probiotic yogurt fortification with Guava pulp. J Food Nutr Health. 2021; 4(2)

most sources of these good bacteria are yogurt, which usually contains this microorganism along with other nutrient. Yogurt is a creamy, fermented dairy product. Probiotic yogurt is any yogurt that contains live, active bacterial cultures. Most natural or regular yogurt is probiotic. A normal serving of yogurt contains billions of bacteria, which many of us believe to be beneficial to the body. Research has shown that the bacteria in yogurt can affect an individual's gastrointestinal system which naturally contains trillions of bacteria itself but just how beneficial probiotic yogurt is to a person's health wasn't clear as of 2012. When yogurt is formed, bacterial cultures are added to exploit, and therefore the sugar within the milk transforms into carboxylic acid. The carboxylic acid then reacts with the protein within the milk to offer the yogurt its thick, creamy texture. Lactic acid is also what makes yogurt taste tart or tangy [1,2].

Micronutrient and macronutrient malnutrition, hidden hunger, is a serious health risk comes due to globally estimated due to deficiency of under nutrition to cause the deaths of between 3 and 5 million people per year. (FAO) Food fortification or enrichment is that the process of adding micronutrients (essential trace elements and vitamins) to food. As defined by the planet Health Organization (WHO) and therefore the Food and Agricultural Organization of the United Nations (FAO), fortification refers to "the practice of deliberately increasing the content of an essential micronutrient, i.e. vitamins and minerals (including trace elements) during a food, so on improve the nutritional quality of the food supply and to supply a public health benefit with minimal risk to health", whereas enrichment is defined as "synonymous with fortification and refers to the addition of micronutrients to a food which are lost during processing" [3,4].

Foods supported fruits and vegetables, like its juices and pulp represent a replacement potential carrier and source of probiotic microorganism. Yogurt, the simplest carrier of probiotics, traditionally is manufactured streptococcus thermophiles and lactobacillus deldrueckii ssp. Bulgaricus (L. bulgaricus) as starter cultures. Raw and fermented fruits represent an excellent vehicle for probiotics due to Majority 70% of people in India do not consume enough micronutrients such as vitamins and minerals in day to day life. Most yogurts are combined with one or more flavors, typically fruit flavors. Various toppings and other foods, like berries or granola, are often added to or mixed into yogurt also. Probiotic organisms, or probiotics, live microorganisms that are believed to profit the health of a number organism when administered in adequate numbers. Dietary supplements that contain probiotic organisms also are called probiotics.

According to Hippocrates, "Let your food be your medicine" and foods is also as a medicine because that is cure disease but medicinal product is not foods. Now

health foods is define which is a healthy diet consisting of foods with functional properties also because that is help to promote wellbeing and reduce the some disease. Guava is a Functional fruits which is major role play in metabolic activities an also effective for human intestinal health [5-8].

Materials and Methods

To developed functional probiotic yoghurt fortification with guava pulp, first developed probiotic yoghurt than fortified with guava pulp at different ratio (0%, 10%, 20%, 30%, and 40%) added with probiotic yoghurt.

Developed probiotic yogurt

Milk containing fat 6.0%, SNF 9.0%, in 100 g, energy, Kcal 86.4 g, saturated fat 3.9 g, carbohydrates 5.0 g, protein 3.1 g, calcium 108 mg. was obtain from (Amul Gold, pasteurized full cream milk) local market sharda Nagar Rae Bareli road, Lucknow, Uttar Pradesh, India. And live and Active freeze-dried Starter probiotic powder culture (contains Casei, Bifidus and Acidophilus, etc) was purchasing from online Ammazone (Figure 1).

Storage in Refrigeration at 4°C

Figure 1. Flow chart of probiotic yogurt preparation and fortification of yogurt

Microbial analysis

For this test, MacConkey Agar media for coliform test and Sabouraud Dextrose Agar media was prepared and autoclaved at 121°C, 15 psi for 15 minutes. The sterile media was poured separately into sterile petri plates under Laminar air flow and allowed to solidify properly. The samples were serially diluted in 1% sterile peptone water up to 107 dilutions and from this 10-2 dilution was used for yeast and mold count while 10-6 was used for the coliform count. From the diluted sample, 0.1 ml of aliquot was added drop wise on the plate and uniformly spread with the glass rod till it gets completely absorbed. The plates were sealed and incubated at 37°C for the coliform and 27°C for the yeast and mold count. The CFU/ml was calculated using the formula.

cfu=(No.of colonies)/(dilution factor \times volume of sample plated)

*10-2 dilution was plated for yeast and mold count while 10-6 dilution was used for coliform count. The volume of sample used for plating was 0.1 ml (Figure 2).

Figure 2. SDA media plates with colonies for yeast and mold count

Sensory evaluation

The color and appearance, flavor, texture, taste and overall acceptability of all yogurt samples were evaluated sensorial by a semi trained panel of 30 members using a 9-point score system with score ranging from 9 to 1 where score represented like extremely and dislike extremely

Table 3. Mean sensory characteristic of probiotic yogurt

respectively.

Result and Discussion

The freshly activated yoghurt culture was inoculated in fresh milk at the 1% and 2% level and incubated at 42°C for the preparation of yoghurt. Sensory evaluation, it was found that 2% level of functional probiotic yoghurt inoculum used was found to be most acceptable. The acidity of plain yoghurt confirms with the FSSAI standards. The data obtained was statistically analyzed for mean \pm standard error. From the statistical analysis, it was found that overall acceptability of yoghurt prepared with 2% inoculum level was found to be highly acceptable. From the sensory evaluation it was found that functional probiotic yoghurt fortified with guava pulp (40%) was recorded to be highly unacceptable (Tables 1-3).

Table 1. Formulation of fortified probiotic yogurt withguava pulp

Sample	Ingredients Probiotic yoghurt (%)	Guava pulp (%)
А	100	0
В	90	10
С	80	20
D	70	30
Е	60	40

Table 2. Mean sensory characteristic of plain yogurt

Quality parameters	Probiotic yoghurt (1% level inoculum)	Probiotic yoghurt (2% level inoculum)
Flavor	$8.7\pm~0.11$	8.6 ± 0.13
Consistency	8.5 ± 0.17	8.2 ± 0.25
Taste	8.6 ± 0.20	8.3 ± 0.23
Color and Appearance	7.8 ± 0.21	8.0 ± 0.19
Overall Acceptability	8.2 ± 0.17	8.6 ± 0.20

Quality parameters	Control (plain probiotic yogurt)	Probiotic yoghurt prepared using <i>L</i> . <i>delbruckii</i>	Probiotic yoghurt prepared using <i>L</i> . <i>casei</i>	Probiotic yoghurt prepared using S. thermophiles
Flavor	8.5 ± 0.17	8.7 ± 0.12	8.3 ± 0.15	8.7 ± 0.33
Consistency	8.2 ± 0.26	8.5 ± 0.16	8.2 ± 0.23	8.3 ± 0.22
Taste	8.3 ± 0.32	8.3 ± 0.15	8.3 ± 0.22	8.5 ± 0.32
Color and appearance	8.1 ± 0.21	8.1 ± 0.17	8.6 ± 0.18	8.5 ± 0.17
Overall Acceptability	8.0 ± 0.25	8.2 ±0.19	8.6 ± 0.24	8.2 ± 0.23

Citation: Madhu, Neetu S. Development and Sensory evaluation of functional probiotic yogurt fortification with Guava pulp. J Food Nutr Health. 2021; 4(2)

Guava is an important source of antioxidants (vitamin C, A and fibers) and calcium, magnesium and potassium. Guava characterized by high amount of fibers, which help in digestion and high amount of β carotene, anti-oxidant and minerals. Blending of guava pulp in yoghurt would produce balanced and enjoyable food. However, guava pulp could be used in the production of fruit yogurts that

would reduce the postharvest loss also.

The data obtained by statically analyzed for mean \pm standard error. From the statically analyze it was found that overall acceptability of yoghurt prepared with 2% inoculum level was found to be highly acceptable (Tables 4 and 5)

Table 4. Mean sensory characteristic on quality of plain yogurt, fortified with guava pulp at different ratio (0%, 10%, 20%, 30%, 40%)

Quality parameters	Control 0%	Probiotic yoghurt fortified with guava pulp (10%)	Probiotic yoghurt fortified with guava pulp (20%)	Probiotic yoghurt fortified with guava pulp (30%)	Probiotic yoghurt fortified with guava pulp (40%)
Flavor	8.5 ±0.17	8.0 ± 0.17	8.2 ± 0.16	8.4 ± 0.17	8.5 ± 0.36
Consistency	8.2 ± 0.26	8.2 ± 0.26	8.2 ± 0.25	8.2 ± 0.26	8.4 ± 0.26
Taste	8.3 ± 0.32	8.1 ± 0.32	8.3 ± 0.32	8.3 ± 0.32	8.3 ± 0.32
Color & appearance	8.1 ± 0.21	8.1 ± 0.21	8.1 ± 0.22	8.1 ± 0.21	8.4 ± 0.33
Overall Acceptability	8.0 ± 0.25	8.2 ± 0.16	8.3 ± 0.25	8.4 ± 0.33	8.6 ± 0.35

Table 5. Mean sensory characteristic on quality of probiotic fruit yoghurt

Quality	Control 0%	Probiotic	Probiotic	Probiotic	Probiotic
parameters		yoghurt fortified	yoghurt fortified	yoghurt fortified	yoghurt fortified
		with guava pulp	with guava pulp	with guava pulp	with guava pulp
		(10%)	(20%)	(30%)	(40%)
Flavor	8.3 ± 0.70	8.0 ± 0.17	8.2 ± 0.16	8.4 ± 0.17	8.5 ± 0.69
Consistency	8.2 ± 0.75	8.2 ± 0.26	8.2 ± 0.25	8.6 ± 0.26	8.6 ± 0.66
Taste	8.0 ± 0.40	8.1 ± 0.32	8.3 ± 0.32	8.3 ± 0.32	8.6 ± 0.64
Color &	8.1 ± 0.55	8.1 ± 0.21	8.1 ± 0.49	8.5 ± 0.55	8.4 ± 0.73
appearance					
Overall	8.0 ± 0.50	8.2 ± 0.16	8.3 ± 0.55	8.4 ± 0.33	8.7 ± 0.75
Acceptability					

Probiotic yoghurt fortified with guava (40%) had secured highest score for organoleptic values than the control probiotic yoghurt. Guava pulp fortified yoghurts were founds most preferred to panelists than control yoghurt. Higher solids and fiber content in fruit pulp may be associated with increasing viscosity and consequently improve the textural properties of fortified with guava pulp yoghurts.

Conclusion

Probiotic yogurt prepare by fortified with 40% guava pulp are more acceptable by panelists, this was due to combination between guava pulp and probiotic yoghurt of dairy products. This is successfully stored up to 14 days. It can be recommended to all age group. Probiotic lactobacilli and streptococcus thermophilus are gaining enormous attention because of their effects on health such as anti-diabetic, anti-diarrheal, anti-pathogenic, anticancerous etc. guava pulp is also extremely healthy, having a high content of dietary fiber anti-oxidants and minerals and vitamins etc. and hence could prepare as a beneficial medium for cultivating production.

References

- 1. US Department of Agriculture, Agricultural Research Service. FoodData Central, 2019.
- Bhat JA, Naik MI, Tenguria RK. Isolation of Lactic acid bacteria under low temperature for the preparation of yoghurt. Int J Appl Bio pharmaceutical Technol. 2013;4(1):293-298.

- 3. Padayachee A, Day L, Howell K, et al. Complexity and health functionality of plant cell wall fibres from fruits and vegetables. Crit Rev Food Sci Nutr. 2015; 57:59-81.
- 4. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity and the prevention of cancer: a global perspective. Washington (DC). 1997.
- 5. Zekai Tarakci, Erdogan Kucukoner. Physical, chemical, microbiological and sensory characteristics of some fruit-flavored yoghurt. YYÜ Vet Fak Derg. 2003; 14(2): 10-14.
- 6. Díaz-López A, Bullo M, Martínez-González MA, et al. Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. Eur J Nutr. 2016; 55:349–360.
- 7. Slavin JL, Lloyd B. Health benefits of fruits and vegetables.

Adv Nutr. 2012; 3:506–516.

 Terry LA. Health-promoting properties of fruit and vegetables. 1 ed. Wallingford (United Kingdom): CABI; 2011.

*Correspondence to:

Madhu

Research scholar

Department of HDFS, school for Home Science

Babashaheb Bhimrao Ambedkar (A central) University, Lucknow, UP, India.

Email: madhu.bbaulucknow2019@gmail.com