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Abstract

Counting of cells can give useful information about the cell density to understand the concerning cell
culture condition. Usually, cell counting can be achieved manually with the help of the microscope and
hemocytometer by the domain experts. The main drawback of the manual counting procedure is that
the reliability highly depends on the experience and concentration of the examiners. Therefore,
computer vision based automated cell counting is an essential tool to improve the accuracy. Although the
commercial automated cell counting systems are available in the literature, their high cost limits their
broader usage. In this study, we present a cell counting pipeline for light microscope images based on
hemocytometer that can be easily adapted to the various cell types. The proposed method is robust to
adverse image and cell culture conditions such as cell shape deformations, lightning conditions and
brightness differences. In addition, we collect a novel human promyelocytic leukemia (HL60) cancer cell
dataset to test our pipeline. The experimental results are presented in three measures: recall, precision
and F-measure. The method reaches up to 98%, 92%, and 95% based on these three measures
respectively by combining Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG).
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Introduction
The cell counting procedure is an indispensable part of all cell
culture experiments [1]. Knowledge of the considered cell
quantity is an important parameter for the cell-based
experiments. Starting with an accurate cell amount supports
and guaranties the reliability of the experimental results. The
unstable estimations of cell density may end up with the biased
experimental results accordingly. In addition, it helps to
maintain the density of cell culture for the optimal growth rate.
A variety of false impressions is common in the manual
counting process caused by examiner’s experience and
tiredness. Therefore, an automated cell counting system is
inevitably needed to improve the accuracy of the cell counting
process. In the literature, the cell counting is frequently done
manually with the help of the light microscope [2] and
hemocytometer [3] by the experts.

Briefly, hemocytometer is a piece of glass on which lines are
drawn in a certain size to help the manual counting. Ultimately,
it contains a particular volume of the solution. By using the
count of cell samples, cells/ml can be used by getting
information about the overall cell suspension.

Light microscopes are simply the type of microscope which
have the light source that is placed at the bottom and the
objective is at the top. Moreover, the sample that will be
examined is placed between these two. There are several
objective ratios for the microscopes, and the researcher can set
this value accordingly to their needs. Note that depending on
the increase of the objective values, the detail of the view can
be increased. However, the size of the visible area decreases.
Lastly, the 40X objective setting is often set during the manual
cell counting.

HL60 [4] is the cell type used throughout the study which
corresponds to the kind of leukemia cancer. These cells have
the ability to divide them indefinitely, thus it makes them a
continuous cell source for the cancer research. To this end,
HL60 cells are used as an essential material in various
microbiological studies to track new anticancer compounds on
the leukemia treatment. Morphologically, HL60 cells are
rounded and their diameters vary within a range.

The basis of the proposed method is the adaptation of
hemocytomer-based manual counting to automated procedure
by adding computer vision based pipeline to reduce its
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shortcomings. The proposed pipeline similarly uses a
microscope and hemocytometer as in the manual counting
while it eliminates the shortcomings of human labor and
reliability.

Related Work
The automated cell counting studies can be grouped under
three major categories, namely, cell counting for blood cells,
cell colony counting (or bacteria) and hemocytometer-based
cell counting. For the first category, there is a group of studies
that is done for the blood cells. In essence, in these studies
[5,6], two common characteristics have been emerged. First,
the methods have been adapted to the blood cell images with
high microscopic magnifications (e.g. 1000X). Second, the
studies do not use hemocytometer and they singly utilize the
images that have only cells with an uniformly distributed
background. Ultimately, it is quite easy to distinguish. The
second category, cell colony counting [7], is a fundamental
way of collecting information about the cell cultures.
Researchers use this information to evaluate the side effects of
the antibiotics and drug safety.

The third group of automated cell counting is based on
hemocytometer-based cell counting. In the study introduced by
Brinda et al. [8,9], the cells are segmented by using a recursive
algorithm. They test their algorithm on the conventional
hemocytometer corners and the test images are quite limited.
At the end, the quantitative results for cell population are
reported with the accuracy of 95%-100%.

Claudio and Leonilda [10] proposed that cells are counted by
using the captured images at two different focal settings which
mean that the users need to acquire a sample twice. They claim
that the method can obtain approximately 97% of cells.

Yu-Wei et al. [11] presents an approach which uses image
processing techniques to count the number of cells for a given
image. The corners of hemocytometer are used as the counting
area and the probability of cell overlaps is not considered in
particular. As claimed, the highest hit rate is 100% and the
corresponding miss rate is 0%. Note that they also explain that
their test results are deployed on only six different images
which is relatively small.

In the very recent study, Dong et al. [12] concentrates on the
insect cell counting pipeline by using bright-field microscopy.
They exploit overly focused images to decrease the domination
of hemocytometer lines with respect to the cells. Briefly, the
pipeline is based on image filtering. Their final error rate is
2.21% on average, ranging from 0.89% to 3.97%.

To best of our knowledge, there is no distinct study in the
literature that presents a comprehensive pipeline on
hemocytometer based cell counting by accounting all adverse
conditions exhibited for the problem. In addition, there is no
publicly available dataset in the literature for HL60 cancer
cells that can be used for the academic studies.

Materials and Methods
In this section, fundamental concepts are revised which will be
used in the proposed pipeline.

HL60_HEM40X_CC image dataset
In this study, we propose a baseline dataset referred as
HL60_HEM40x_CC and it is available from
“biochem.atilim.edu.tr/datasets/” web address. This dataset
contains unstained HL60 cancer cell images with the
magnification factor 40X by hemocytometer (HEM40X) for
Cell Counting (CC). HL60_HEM40x_CC is composed of three
main components as the image sets, ground truth cell
annotations, and the counting area boundary annotations.

Image sets: Images are acquired in different sessions by Motic
B3-Series 2.0 Megapixels Moticam 2000 camera attached to
the microscope. Moreover, the dataset contains 468 Red-
Green-Blue (RGB) images in 1200 × 1600 pixel resolution. We
divide the dataset into two subsets as Sets 1 and 2 for the
purpose of using each set in either training or testing stage ones
at a time. Note that the dataset contains challenging samples
which possesses realistic conditions. In particular, imperfect
visualization, cell shape deformations, varying lighting,
clumped cells and impurities are some of the real conditions
observed in the dataset.

Ground truth cell annotations: Ground truth cell coordinates
for each image are annotated by three experts by labelling 6890
cells in total. Experts annotate all cell locations as ‘Positive’
and non-cell locations as ‘Negative’ samples and the statistics
of the sets are summarized in Table 1. Additionally, sample cell
and non-cell images are available on the dataset website.

Table 1. Statistics of annotated HL60 cells for each set.

Labels Number of cells

Set 1 Set 2

Cell 2621 4269

Non-cell 3548 4583

The ground truth annotations for each image are stored in
Comma Separated Values (CSV) file format. The coordinate
annotations are in form of bounding box where x, y, width and
height indicate the coordinate of the upper-left of the bounding
box and its width and height values respectively.

Counting area boundary annotations: There is a
conventional counting rule [13] that needs to be utilized to
avoid double-counting. More precisely, the cells intersecting
left and top sides of the middle of the triple lines are counted
(i.e. counting area) yet the cells on the right and bottom ones
are not counted in the process.

For each image, the counting area boundary annotations are
defined by employing the boundaries and they are manually
annotated by the experts. Ultimately, each of the annotations
are served separate file as the same format cell annotations.
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Each of the file has four entities which define the top, bottom,
right and left boundaries of the counting area respectively.

Bounding box and sliding window
A bounding box [14] (i.e. bounding rectangle) is exploited to
describe the convex area that covers a single cell inside the
image. Intuitively, the bounding box collusion refers to the
process of detecting the intersections between two bounding
boxes. If the collided area is larger than 0, then the overlap
ratio must be calculated to evaluate the level of collusion.

Basically, the sliding window approach [15] has a certain size
of the imaging window (i.e. bounding box) and it slides across
the input image with a step size. Each and every step of sliding,
a sub-image patch is cropped from the input image. If we
consider the image as a single matrix, the sliding window
approach can be assumed as the process of separation
operations that separate the large matrix into smaller sub
matrices.

In the construction of the dataset, experts use the square
bounding boxes to annotate the cell locations. Practically, the
bounding box collusion is utilized to evaluate how similar
expert annotates and the pipeline outputs are. This is a ratio
type called as minimum type collusion rate (i.e. Min type
collusion rate). Formally, the minimum type collusion rate is
calculated as the area of intersection between bounding box A
and bounding box B and it is divided by the minimum area of
these two bounding boxes.

Feature extractors
Feature extraction is the way of representing an image by using
less number of descriptors obtained from the image pixel
relations. There are three promising feature extractors that are
used throughout the paper, namely, Local Binary Pattern
(LBP), Local Phase Quantization (LPQ) and Histogram
Oriented Gradients (HOG).

LBP [16] derives a description by using the texture features
obtained from local neighborhoods. Precisely, it uses a center
pixel as an anchor point and labels the pixels N that are within
this circular neighborhood by radius R. Ultimately, if the value
of a pixel in the neighborhood is larger than the value of the
center pixel, it is labeled as 1 otherwise it is equal to 0. The
results for each center pixel are encoded and a histogram is
built from the outputs of all corresponding pixels of the whole
image.

LPQ [17] uses local phase information to generate blur and
illumination invariant features. The main idea is to transform
an input image to frequency domain by computing the Short-
Term Fourier Transform from rectangular neighborhoods. The
phase information is expressed as binary coefficients. Then, the
feature is produced by representing 8 binary values obtained
from binary coefficients as the integer value varying from 0 to
255. As feature extractor, LPQ method is invariant to
illumination changes compared to the LBP.

HOG [18] is one of the feature descriptors that are widely used
in the pattern recognition community. It accounts the
occurrence of gradient orientations inside a sub-area of the
image. More precisely, the extraction of HOG features begins
by dividing the image into small cells (i.e., sub-areas), then it
calculates the local histogram of gradients representing by the
directions of the pixels. To this end, it computes local
histograms from the cells and converts to a single 1-by-N
feature vector where N is the length of the feature. Practically,
this feature encodes the local shape information of the objects
perfectly and it is robust to illumination changes due to the
gradient operations.

Classifiers
Learning latent patterns about data (i.e., classification) can be
achieved by exploiting human annotations that is renowned as
supervised learning in the literature. Various supervised
learning techniques are covered such as K-Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Random Forest
(RF) in the paper.

KNN [19] practically caches all of the training samples, and
predicts the label for an unseen input by counting the labels of
training samples from a certain number (K) of nearest
neighbors. Even though it is quite simple, KNN achieve
successful results for a large number of classification
problems. Its classification score (i.e., highest one) indicates
that the confidence of the prediction for an unseen input
corresponds to a particular class. The scores can be considered
as the probability distribution which intuitively corresponds to
the ratio of sample labels within K of the nearest neighbors of
the input.

SVM [20] separate the decision boundaries of the feature space
such that it ultimately maximizes the margin between two
individual classes by learning the hyperplane. In the training
stage, nonlinear mapping can be also exploited by projecting
the input sample to a high-dimensional feature space with a
kernel function. To this end, the separation of samples is
promoted by this assumption. There are several well-known
kernel functions in the literature and Radial Basis Function
(RBF) is the most preferred one. In the test stage, a new input
is classified based on their mapped directions of the
hyperplane. Furthermore, SVM is one of the most
outperforming classification techniques, due to its good
generalization capacity. More precisely, for a small number of
training samples, it can still model data effectively. Lastly,
SVM predicts only class labels without any confidence score
information. Platt suggests an extra calculation to extend the
SVM model to compute the score estimates. The scores
correspond to the distances of the samples to the hyperplane.
Hence, the higher score indicates the higher confidence.

RF [21] is one of the most popular approaches and has shown
significant performance compared to the algorithms used for
various classification problems. It contains a series of tree
classifiers in which they are used to classify the samples. First,
the input sample is modeled with the classification trees in the
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forest. Next, each tree returns a classification score and RF
decides the classification result by considering these votes.

K-fold cross validation
In the literature, there is an idea which can be expressed as that
there is no ultimate classifier for all feature extractors that
constantly outperforms in all pattern recognition tasks [22]. K-
fold cross validation [23] is a commonly used technique to
evaluate the predictive accuracy of multiple approaches that
yield the best combination. Intuitively, it splits the data into k
subsets. Then, a test fold is chosen from one of the k subsets
and the remaining k-1 subsets are used for training for the each
iteration.

The proposed pipeline
Even if the grid structure for hemocytometer is critical for
manual cell counting, it is a major drawback for the computer
vision. A simple solution is to replace these lines by
normalizing the values with the background color. However,
when the approach is applied, the white lines are eliminated
(i.e., the color is converted) yet the cells on these lines are also
deformed and the counting results becomes inconsistent.
Therefore, we construct our dataset such that it contains
training samples that account this drawback. Hence, the
classification models can learn the pattern and become more
robust without the need of any extra processing step.

Furthermore, the main objective of our method is to exploit the
assumption of sliding windows and the vision-based pattern
recognition algorithms. Precisely, all possible cell locations are
iteratively investigated by cropping small sub-image patches
from the pre-defined window size. This step should be efficient
in order to deploy an effective model. To ease the
understandability, the proposed method is divided into five
steps.

Improving image quality
The success rate of the proposed method is highly influenced
by the quality of images so that it is important to keep the
image qualities at an optimum level. In the enhancement step,
first, a raw RGB input image is converted to a gray level image
by forming the weighted sum of R, G, and B components as
follows:

Gray level=0.2989 × R+0.5870 × G+0.1140 × B → (1)

Second, the pixel intensities are mapped to the values by
saturating 1% of the lowest and highest values as explained in
[24]. Then, the raw images become more interpretable for
further image analyses. Note that this procedure is accounted
for both the training and test data.

Defining the counting area
In the hemocytometer based cell counting, there is a rule to
avoid double-counting that explained in the materials and
methods section. For this purpose, the counting region should
be initially determined. This step corresponds to the estimation

of counting area of the input image. Since, the counting area
boundary locations are provided in the dataset, there is no need
to utilize any other step. However, this step might be
automated in future.

Reducing search space
Most of the images in the data set contains a fewer number of
cells than non-cell (i.e. non-textured) regions. Hence, the
elimination of empty areas by a simple algorithm ultimately
reduces the search space (i.e., computation complexity), thus
the approach becomes more efficient in terms of processing
time. The precision rate for non-cell region scan be also
improved (i.e., misclassification rate). Edge detection and
sliding window are used together to reduce the cell search
space. For a given image, the edge density measures the
density of edges obtained by the edge detector. Ultimately, the
edge density can differ for the regions that contain high/low
edge information.

Therefore, before finding cell locations in detail, edge
detection is computed to determine the possible cell locations
that can be considered in the cell counting. Canny edge
detector [25] is applied to each cropped sub-image and the
edge density is measured. If the density value is greater than a
threshold (i.e. 10%), the approach accounts the sub-image as a
possible cell location; otherwise it is assessed as empty.
Empirically, we tune some of the parameters that are used for
this process as follows. We set the optimum window size and
the step size as 50 × 50 and 5 pixels respectively.

Finding cell locations
After reducing the search space, the remaining parts of the
input image might still contain cell and non-cell parts. To
estimate the cell locations, various classification and feature
extraction methods are adapted as previously explained.
Furthermore, we can separate the estimation of the cell location
stage into two steps as training and test. In the training step, a
large body of fixed sized cells and non-cells are represented by
the visual feature extractor and a classifier is trained by using
these representations. To this end, this step obtains an ideal
visual pattern for the classification and feature combination.

Note that this model is computed only once and stored for the
test stage. In the test step, our approach takes all of the sub-
images from the sliding windows and calculates the
probabilistic decisions as a posterior probability (i.e.
confidences) for the possible cells. To this end, the detected
cell locations are stored in a list for a final step based on their
confidences.

Elimination of the nested cell locations
In the final step, the nested cell locations are eliminated from
the list. Precisely, the classification algorithms can yield more
than one location for each cell location. For this reason,
selecting the most suitable response from a set of outcomes is
needed as an additional strategy.
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Non-Maximal Suppression (NMS) [26] is a widely used
technique as the post-processing in the object recognition. It
chooses the best likelihood out of overlapped bounding boxes
regarding to their confidences. In the NMS algorithm, it selects
a random bounding box and compares with the others that are
collided by suppressing (i.e. removing) the lower ones. This
process repeats until no more collided bounding box remains.
The type of the collusion and the threshold are set as Min type
ratio with 0.25 (i.e. 25%) respectively.

Results and Discussion
In order to assess the superiority of the proposed method, a
series of analyses have been performed on the dataset as
explained in [27]. There are several statistical metrics to
evaluate the performance of the proposed pipeline [28]. Also,
these metrics help to compare baselines in terms of rigid
standards as recall, precision, and F-measure.

First, we utilize the k-fold cross validation to estimate the best
performance between different feature extractors and
classifiers by tuning the parameters. The results can be
summarized in Table 2 for the best pairs and parameters. We

set the k value to 3, 5, 10, and 100. Note that the results are
highly correlated and support each other.

Table 2. The best parameter configuration for each combination of
feature extractors and classifiers using k-fold cross validation.

Classifier Feature Extractor

LBP LPQ HOG

R N Winsize Freqestim Cell size

KNN (k=3) 3 20 9 1 12

SVM linear 3 4 17 3 12

SVM rbf 3 4 17 2 18

RF(250) 4 20 19 1 14

Second, the best combination parameters for the overall
performance are evaluated in Table 3. As stated, since the
HL60_HEM40X_CC dataset contains two sets of images, at
each step, one of the set is used for training while the
performance is reported on the other set and vice versa.

Table 3. Experimental results for the proposed pipeline. Two thresholds are selected; 0.9 for 90% and similarity 0.8 for 80% or more similarity
between expert annotations and pipeline outputs.

 Min type ratio with threshold 0.9 Min type ratio with threshold 0.8

Feature
extractor

Classifier Set 1 Set 2 Set 1 Set 2

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

LBP KNN (k=3) 0.29 0.06 0.1 0.21 0.05 0.08 0.3 0.06 0.1 0.26 0.06 0.1

SVM linear 0.74 0.5 0.6 0.69 0.44 0.54 0.8 0.53 0.64 0.78 0.49 0.6

SVM rbf 0.79 0.53 0.63 0.7 0.47 0.56 0.85 0.57 0.68 0.8 0.53 0.64

RF (250) 0.75 0.48 0.59 0.73 0.48 0.58 0.89 0.58 0.7 0.87 0.57 0.69

LPQ KNN (k=3) 0.29 0.08 0.13 0.31 0.11 0.16 0.34 0.1 0.15 0.44 0.15 0.22

SVM linear 0.84 0.36 0.5 0.58 0.79 0.67 0.86 0.37 0.52 0.6 0.81 0.69

SVM rbf 0.85 0.56 0.68 0.74 0.62 0.67 0.86 0.57 0.69 0.75 0.63 0.68

RF(250) 0.91 0.75 0.82 0.86 0.76 0.81 0.93 0.78 0.85 0.89 0.78 0.83

HOG KNN (k=3) 0.54 0.4 0.46 0.67 0.58 0.62 0.67 0.49 0.57 0.8 0.69 0.74

SVM linear 0.94 0.51 0.66 0.93 0.66 0.77 0.98 0.53 0.69 0.97 0.93 0.95

SVM rbf 0.96 0.91 0.93 0.95 0.91 0.93 0.98 0.92 0.95 0.98 0.93 0.95

RF (250) 0.94 0.88 0.91 0.93 0.87 0.9 0.98 0.92 0.95 0.97 0.91 0.94

Throughout the paper, various parameters for feature extractors
and classifiers are considered. Since LBP is computed by using
N sample points on a circle of radius R, the values from 2 to 8
by 2 and from 4 to 6 by 4 are considered accordingly. In
similar, LPQ uses the size of local window (WinSize) with 3 to
5 by 6 and a low frequency estimation method (Freqestim).
Lastly, HOG is evaluated by tuning only cell size (CellSize)
from 6 to 32 by 2. KNN is tested by changing the size of k
from 1 to 21 by 2 and k is set to 3 as the best configuration.

SVM is used with linear and RBF kernels. RF is tested by
using 250 trees.

The experimental results are presented in Table 3 as a tabular
form. Moreover, recall precision and F-measure are obtained
by comparing with the ground truth for each image set and
depending on the different collusion ratio thresholds. Results
are presented by using min type ratio with thresholds 0.9 and
0.8. 0.9 indicates that 90% or more bounding box intersection
area is obtained between the method output and the ground
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truth. Similarly, 0.8 denotes that the results of the proposed
pipeline reach to 80%or more bounding box intersection area.

To ease the understandability, the best results for each feature-
classifier combination are denoted by the underlined character
in terms of all performance metrics. The results show that the
HOG feature extraction is clearly more reliable than the other
popular methods such as LBP and LPQ. Furthermore, SVM
with RBF kernel and RF yield compatible performance. KNN
shows the worst performance and the performance drops 10%.
Since, HOG is the best feature extractor; SVM with RBF
kernel increases the overall recall and precision (i.e. F-
measure) scores up to 3% compared to RF. In similar, it
increases up to 27% compared to SVM with the linear kernel,
and up to 47% compared to KNN. In conclusion, the
experimental results verify that HOG and SVM combination
with RBF kernel is the best performing approach for the
dataset. This combination achieves 98%, 92% and 95% recall,
precision, and F-measure scores respectively.

Conclusion
In this paper, we propose a pipeline for the automated
hemocytometer-based cell counting that can easily have
adapted to the various counting process for different cell types.
Similar to the manual counting, the proposed method uses a
microscope and hemocytometer while it eliminates the
shortcomings and reliability of human labor.

The experiments are conducted on the well-known cancer cell
type namely, HL60. Furthermore, we acquire a novel dataset as
a baseline (HL60_HEM40x_CC) which is publicly available
for further research. This dataset contains image samples
which exhibit various adverse experimental conditions that
practically simulate possible real life situations. It is released
from the “biochem.atilim.edu.tr/datasets/” web address to
contribute to the domain of image-based cell counting by
hemocytometer. HL60_HEM40x_CC is mainly collected for
cell counting that includes 468 raw hemocytometer images
acquired on 40X light microscope objective and using
unstained HL60 cells. Moreover, the ground truth cell
annotations which comprise total 6890 cells are labeled by the
experts.

From our experiment results, the pipeline reaches up to 98%,
92%, and 95% in terms of recall, precision and F-measure,
respectively by combining SVM with RBF kernel and HOG.
To this end, additional observations are made under the
guidance of the experimental results.

Lastly, there might be studies in future on the dataset to reduce
the classification errors by adapting different computer vision
approaches, even though the current results yield promising
level of success. Hence, new extensions can be made on the
dataset in future by adding new cancer types.

Acknowledgments
This study was extracted from PhD thesis (Thesis Number
490289) titled as "Computer vision and machine learning

based adaptable conversion method for any light microscope to
automated cell counter by trypan blue dye-exclusion" which
can be accessed from the https://tez.yok.gov.tr/
UlusalTezMerkezi/

References
1. Ongena K, Das C, Smith JL, Gil S, Johnston G.

Determining cell number during cell culture using the
Scepter cell counter. J Vis Exp 2010.

2. Stanislav K. Light microscopy in biological research.
Biophys J 2005; 88: 3741.

3. Lin DS, Huang FY, Chiu NC, Koa HA, Hung HY, Hsu
CH, Hsieh WS, Yang DI. Comparison of hemocytometer
leukocyte counts and standard urinalyses for predicting
urinary tract infections in febrile infants. Pediatr Infect
Dis J 2000; 19: 223-227.

4. Birnie GD. The HL60 cell line: a model system for
studying human myeloid cell differentiation. Br J Cancer
Suppl 1988; 9: 41-45.

5. Huang DC, Hung KD, Chan YK. A computer assisted
method for leukocyte nucleus segmentation and
recognition in blood smear images. J Sys Software 2012;
85: 2104-2118.

6. Nazlibilek S, Karacor D, Erturk KL, Sengul G, Ercan T,
Aliew F. White Blood Cells Classifications by SURF
Image Matching, PCA and Dendrogram. Biomed Res
2015; 26: 633-640.

7. Bottigli U, Carpinelli M, Fiori PL, Golosio B, Marras A,
Masala GL, Oliva P. A new automatic system of cell
colony counting. World Acad Sci Eng Tech 2006; 15:
159-163.

8. Prasad B, Choi JS, Badawy W. A high throughput
screening algorithm for leukemia cells. IEEE 2006
Canadian Conference Electrical and Computer
Engineering, Ottawa, ON, Canada IEEE 2006;
2094-2097.

9. Prasad B, Badawy W. High throughput algorithm for
leukemia cell population statistics on a hemocytometer.
IEEE 2007 Biomedical Circuits and Systems Conference
Montreal, QC, Canada IEEE 2007; 142-145.

10. Mauricio CR, Schneider FK, dos Santos LC. Image-based
red cell counting for wild animals blood. IEEE 2010 32nd
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society Buenos Aires, Argentina
IEEE 2010; 438-441.

11. Chen YW, Chiang PJ. Automatic cell counting for
hemocytometers through image processing. World Acad
Sci Eng Technol 2011; 5.

12. Sui D, Wang K, Park H, Chae J. Bright field microscopic
cells counting method for BEVS using nonlinear
convergence index sliding band filter. Biomed Eng Online
2014; 13: 147.

13. Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibanez
ND, Lopez-Morales CA, Pérez NO, Flores-Ortiz LF,
Medina-Rivero E. Validation of three viable-cell counting

Özkan/Isgör/Sengül/Isgör

2961 Biomed Res 2018 Volume 29 Issue 14



methods: manual, semi-automated, and automated.
Biotechnol Rep 2015; 7: 9-16.

14. Wang Y, Hu YJ, Fan JC, Zhang YF, Zhang QJ. Collision
detection based on bounding box for NC machining
simulation. Physics Procedia 2012; 24: 247-252.

15. Lampert CH, Blaschko MB, Hofmann T. Beyond sliding
windows: Object localization by efficient subwindow
search. IEEE 2008 Computer Society Conference on
Computer Vision and Pattern Recognition, Anchorage,
AK, USA IEEE 2008; 1-8.

16. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-
scale and rotation invariant texture classification with
local binary patterns. IEEE Trans Patt Anal Mac Intell
2002; 24: 971-987.

17. JHeikkila J, Ojansivu V, Rahtu E. Improved blur
insensitivity for decorrelated local phase quantization.
IEEE 2010 20th International Conference on Pattern
Recognition Istanbul, Turkey IEEE 2010; 818-821.

18. Dalal N, Triggs B. Histograms of oriented gradients for
human detection. 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
San Diego, CA, USA, USA IEEE 2005; 886-893.

19. Sengul G. Classification of parasite egg cells using gray
level cooccurence matrix and kNN. Biomed Res 2016; 27:
829-834.

20. Manikandaprabhu P, Karthikeyan T. Unified RF-SVM
model based digital radiography classification for Inferior
Alveolar Nerve Injury (IANI) identification. Biomed Res
2016; 27: 1107-1117.

21. Breiman L. Random forests. Mach Learn 2001; 45: 5-32.

22. Garcia R, Moss F, Nihongi A, Strickler JR, Goller S,
Erdmann U, Schimansky-Geier L, Sokolov IM. Optimal
foraging by zooplankton within patches: the case of
Daphnia. Math Biosci 2007; 207: 165-188.

23. Schaffer C. Selecting a classification method by cross-
validation. Mac Learn 1993; 13: 135-143.

24. Saleem A, Beghdadi A, Boashash B. Image fusion-based
contrast enhancement. EURASIP J Image Video Proc
2012; 2012: 1-17.

25. Canny J. A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell 1986; 8: 679-698.

26. Rothe R, Guillaumin M, Van Gool L. Non-maximum
suppression for object detection by passing messages
between windows. 12th Asian Conference on Computer
Vision Singapore: Springer 2014; 290-306.

27. Sokolova M, Lapalme G. A systematic analysis of
performance measures for classification tasks. Info Proc
Manag 2009; 45: 427-437.

28. Powers DM. Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and
correlation. J Mac Learn Technol 2011; 2: 37-63.

*Correspondence to
Akin Ozkan

Department of Electrical and Electronics Engineering

Atilim University Faculty of Engineering

Turkey

 

Computer vision based automated cell counting pipeline: a case study for HL60 cancer cell on hemocytometer

Biomed Res 2018 Volume 29 Issue 14 2962


	Contents
	Computer vision based automated cell counting pipeline: a case study for HL60 cancer cell on hemocytometer.
	Abstract
	Keywords:
	Accepted on July 5, 2018
	Introduction
	Related Work
	Materials and Methods
	HL60_HEM40X_CC image dataset
	Bounding box and sliding window
	Feature extractors
	Classifiers
	K-fold cross validation
	The proposed pipeline
	Improving image quality
	Defining the counting area
	Reducing search space
	Finding cell locations
	Elimination of the nested cell locations

	Results and Discussion
	Conclusion
	Acknowledgments
	References
	*Correspondence to


