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Abstract

The goal of this work is to develop a Computer Aided diagnostic (CAD) algorithm for segmentation and
feature extraction of Lung Region in Posterior Anterior (PA) chest radiograph (CXR) using different
transforms. In our work, Segmentation of lung region is done by watershed Segmentation and feature
extraction of the segmented lung region is done by five different transform methods the Multi resolution
approach (MRA). The Performance of different MRA techniques like discrete cosine transforms (DCT),
Discrete Wavelet Transform (DWT), Discrete Shearlet Transform (DST), Curvelet Transform (CT) and
Bandlet Transform (BT) for feature extraction of the lung region in CXR is analyzed by using various
statistical parameters. The performance evaluation of all this transform is done for 247 images in
Japanese Scientific Research database (JSRT) database and bests of this method which give good

Feature descriptor is analyzed.

Keywords: CAD, Chest radiography, Feature extraction, Multiresolution approach.

Introduction

Chest radiograph is the cost effective technique, easily
available and has less radiation effect to diagnosis Lung
abnormality [1]. Lung abnormality in chest radiograph may be
due to a number of symptoms like tuberculosis, pneumonia,
lung cancer, etc.,, to categorize the different abnormality
present in the lung region the vital step is to segment the lung
region from the chest radiograph and to extract the features.
The abnormality in CXR may be due to variation in lung
boundary, size, shape, etc., manual segmentation of CXR is
very time consuming since the medical technicians have to
analyze numerous data hence Automatic Segmentation of Lung
region in the Chest radiograph using CAD was developed.
Various algorithms for diagnosing lung abnormality with CAD
have been developed. There are two types of chest radiograph:
Posterior Anterior (PA) and Anterior Posterior (AP). Usually
for Segmenting the Lung region to identify its abnormality PA
chest radiograph is used and for diagnosing heart abnormality
AP is used. In the standard chest radiograph (PA) X-ray beam
passing from Posterior to anterior but in AP Chest radiograph
the X-Ray beam will pass from anterior to posterior [2].

The challenging task for lung segmentation in CXR is to trace
the lung boundary accurately. The lung region extraction is
difficult due to the presence of structures such as ribs,
clavicles, mediastinum, and pulmonary blood vessels. Many
algorithms have been developed to suppress the effect of these
structures [1] and to extract only lung region to study its
abnormality. Numbers of Segmentation algorithms are
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available in the literature. In our study, we consider one of the
region based segmentation method, watershed segmentation
with improvement in segmentation result by reducing
oversampling.

The next important step in diagnosing the abnormality in the
CXR is the extraction of feature set from the segmented image.
In the CXR five different intensities are present, which
distinguish the anatomical structures from one another. The
normal lung region appears as a black intensity any
abnormality in the lung region can be also identified by the
change in the intensity level. This can be analyzed by first
extracting the feature set of the lung region. Various methods
are available for feature extraction in the spatial domain as well
in frequency domain, but some features are easily
distinguishable when we are using frequency domain
techniques. In our work we consider various multiresolution
approaches like DCT, DST, DWT, Curvelet, Bandelet for
feature extraction in the lung region in CXR and the best of
this technique for feature extraction is analyzed by using
various statistical parameters.

In Section 2, various techniques for lung segmentation and
feature extraction from the segmented region were reviewed.
Section 3 discusses about Materials and Methods used in the
proposed work were discussed. In Section 4, Result and
Discussion of the work was discussed. In Section 3,
Conclusion and Future work were discussed.
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Review of Algorithm used for Chest Radiographs

Automating lung segmentation, feature extraction and
classification using CAD in the chest radiograph is the
challenging area of research going on for the past few decades.
However, many algorithms have been developed for this issue
still there is a possibility of false negative. Segmentation of
chest radiograph is carried out such that there should be a less
possibility of false negative. Segmentation algorithm should be
developed such that it is fast, reliable and valuable organ
identification. Usually the Segmentation results are very much
valuable for the end results. If the organs are easily identified
in an image by means of an automatic segmentation algorithm
then it relieves radiologist in analyzing numerous X-ray
images.

Ma et al. made a survey of segmentation algorithm used for
medical images and classified segmentation algorithm based
on 1) Thresolding, 2) Pattern recognition techniques, 3)
Algorithm based on deformable model [3], segmentation based
on thresolding is a very simple approach and it is again
classified as edge based, Region based and hybrid methods but
this method when used alone results in over segmentation.
Segmentation based on pattern recognition methods, consider
medical image as structure and mostly classification based
segmentation algorithm is used. Segmentation based on
deformable model is mainly used for segmentation of Complex
Structures it is a very flexible method [4]. Salam developed
Level set algortihm for lung segmentation [5], Dey and
Muctadir used simple morphological operations for detection
of lung boundary for tuberculosis screening [6], Candemir et
al. developed graph cut based segmentation approach [7] for
lung segmentation, Ginneken et al. developed a segmentation
algorithm and classify it as pixel based method, rule based
method, deformable model based method and hybrid method
[8], Candemir et al. proposed lung segmentation method based
on anatomical atlases [9]. Based on the requirement the
researchers are using the segmentation algorithm alone or as
hybrid method.

Feature extraction algorithm extract information from the
segmented region. Spatial-Frequency domain method of
feature extraction provides a fine feature set for abnormality
classification of CXR images. It extracts the feature both in
multi scale and multi orientations by decomposing the image
into subimages [10]. In a study by Pun and Zhu [11] feature
extraction base on DCT is discussed which provide efficient
feature description when compared to DWT. In the research by
Arivazhagan et al. [12] curvelet transform is used to extract the
edge features which embed on the form of a curve from the
region of interest based on energy and entropy. In a study by
Lim [13] geometric feature extraction of a region of interest is
done by using shearlet transform which has good directionality
and anisotropic property. In a study by Yang [14] Bandlet
transform method of feature extraction is discussed. In our
work feature extraction of the segmented lung region is done
by using DCT, DWT, DST, CT and BT feature set.
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Materials and Methods

In our study we use JSRT database which consists of 247
digital CXR images in which 154 nodule and 93 non nodule
images are available [15,16]. For the simulation, we use
Matlab R2011a.

Methods
Our Work consists of four steps:

i) Image enhancement using CLAHE

ii) Image segmentation using watershed segmentation with
reduction in oversampling

iii) Feature extraction using DCT, Curvelet, Wavelet, Shearlet
and Bandelet Transform.

iv) Comparing the features extracted by the five different
transform using four statistical parameters. The block diagram
of the system is depicted in Figure 1.
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Figure 1. Block diagram of the proposed method.

CXR image enhancement using CLAHE

Contrast Limited Adaptive Histogram Equalization (CLAHE)
enhances the image by partitioning the image into small region
called tiles and operate on each tile. It mainly depends on two
parameters block size and clip limit [17]. This method is very
suitable for Medical image enhancement, so we are using it for
CXR image enhancement. This method has limitations in
amplification of noise and also concentrates mainly on the
enhancement of borders, edges and the low contrast region.

Lung segmentation in CXR using watershed
segmentation

Lung region segmentation in CXR is an important step for
diagnosing abnormality in the lungs. Here we are using region
based algorithms, Watershed Segmentation [18] with reduction
in over segmentation.
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Feature extraction using different transform
approach

The next step in our work is to extract the features of the
segmented lung region using five different transform methods
and analyze the best feature descriptor by using four statistical
parameters. The different transform methods are discussed
below.

Discrete cosine transform

DCT is similar to the Fourier transform except that it uses only
real numbers to specify the coefficients. DCT uses only fewer
co-efficient to approximate lines, but DCT is not well suited
for non stationary signals. The Discrete cosine transform and it
is given by equation (1).

Fuv) = |22 S 0n

yeos| Lt @i+ 1)cos[ 2 + D] £ — (1)

Discrete wavelet transform (DWT)

Discrete wavelet transform represent images in the time-scale
domain. Wavelet transform consists of small wavelets with
finite duration. By use of wavelet transform the image can be
differentiated in to different frequency components with
respect to time. Like Fourier transform in DWT different
wavelets can be used as a basis function for representing other
functions. Wavelet is represented as W(x) which is the
representation of the mother Wavelet and it is given in Eq. (2)

[ ¥ (x-b/a),(a,b) e R xR — (2)

Where a=27 and b=k.27, k and j are integers. The sampling of
Lung image depends upon the value of a and b. DWT is very
much suitable for point singularities, but they are not suitable
for analyzing the images with geometric feature with line and
surface singularity. So the feature extracted by DWT is not
good for curves/edges of the lung region of the CXR. DWT
Transform is applied to the segmented lung region and its
coefficients are analyzed using statistical parameters.

Discrete curvelet transform

Curvelet transform is a multiscale pyramid transform that aims
at a nonadaptive sparse representation of objects with edges.
Curvelet transform has a highly directional sensitivity and
anisotropy. Wavelet Transform has a less directional sensitivity
when compared to curvelet. DWT is well suitable for analyzing
point singularities, but not for edges/curves. There are four
main steps in the curvelet transform [19].

1. Sub band decomposition: In case of the sub band
decomposition, image is filtered into a series of sub bands.
Consider the segments lung region ‘f” which is decomposed
using the following relation

f=(POAIf,A2S, A3S,....... )

Where An is a window function, n=1,2,3...
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2. Smooth partioning: The decomposed image is smoothly
partitioned by using the window function it is given by

Apf=(WoAn)QOs € O

4. Ridgelet analysis: Now the renormalized function is
analyzed using ridgelet analysis

Oy < gQ7 p?\.)a H:(Qa }\‘)

Curvelet transform is applied to the segmented lung region and
its coefficients are analysed using statistical parameters.

Discrete shearlet transform

DST is also one of the Multiresolution approaches. It is formed
by scaling, shearing and translation. Shearlet transform gives
the correct location and orientation of edges in the image. The
discrete shearlet transform is obtained by sampling the
continous shearlet transform [20], the discrete shearlet system
and transform is given by equations (3) and (4). DST also
provides a good anisotropic feature extraction.

_3
SHW) = {1 4 =@ ‘@A77 = 0):(ikm) € A

-3

f — SH(y) f(j,k,m)=<f, v > where f € L% (R?) and j,k,m € Z
x 7 x 72 — (4)

Discrete shearlet Transform is applied to the segmented lung
portion and statistical parameters are calculated for shearlet
coefficients.

Discrete bandelet transform

Bandelet transform is a self adaptive multiresolution geometric
analysis which has the special properties of strict sampling and
adaptability which are very important for image representation
which is not present in the other MGA. It utilizes overall
geometric information from the image which is more important
in identifying every distinctive feature in the image. When
compared to contourlet and curvelet transform, it provides
stable and efficient performance [14]. Bandelet transform
divides the image into sub blocks in multidirection and in
multiscale, from which bandelet coefficients are generated.
Bandelete transform is applied to the segmented lung region in
our work and the statistical parameters are calculated from the
bandelet coefficients.

Result and Discussion

In our work, the CXR image is processed in four steps to
extract the feature from the lung region (Figure 2a). The first
step in our method is image enhancement using CLAHE which
is shown in Figure 2b for sample CXR image from JSRT
database, then Watershed Segmentation is applied to segment
the lung region from the CXR image which is shown in Figure
2c., and the features are extracted using five different transform
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such as DCT, DWT, DCRT, Shearlet and Bandelet. The
features extracted from this transform are analysed using
various statistical parameters for both Lung nodule (Normal)
and Non-nodule (abnormal) images. Here we consider four
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statistical Parameters like Mean, Median, Energy and
Entrophy. The comparison of this parameters for various
transform both for normal and abnormal image is given in
Table 1.

Table 1. Comparison of Statistical Prameters for CXR images available in JSRT database.

DCT DWT DCRT Shearlet Bandelet

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal
Mean 0.63 0.556 0.512 0.736 0.5875 0.864 0.166 0.438 0.302 0.636
Median 0.442 0.516 0.472 0.756 0.496 0.854 0.556 0.778 0.352 0.686
Energy 0.52 0.67 0.3384 0.6 0.272 0.728 0.256 0.502 0.43 0.572
Entropy 0.272 0.718 0.67 0.644 0.132 0.596 0.384 0.532 0.3682 0.652

Figure 2a. Input CXR image (JPCNNO12.img).

Figure 2b. Enhanced image using CLAHE.

The analysis of statistical parameters for various images in the
JSRT database is done graphicaly. The Graphical
representation for mean of the Normal and abnormal image of
the CXR is given in Figures 3a and 3b, median of the Normal
and abnormal image of the CXR is given in Figures 3c and 3d,
energy of the Normal and abnormal image of the CXR is given
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in Figures 3e and 3f, entrophy of the Normal and abnormal
image of the CXR is given in Figures 3g and 3h.

Figure 2c. Lung region segmented using watershed segmentation.
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Figure 3a. Mean for normal image.
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Figure 3b. Mean for abnormal image.
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Figure 3c. Median for normal image.
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Figure 3d. Median for abnormal image.
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Figure 3g. Entrophy for normal image.
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Figure 3h. Entrophy for abnormal image.

In analyzing this various parameters and comparing the result
produced by the different transform we suggest that both
curvelet and Bandlet transform provide the features with good
discrimination between the normal and abnormal images.

Conclusion and Future Work

CAD for automatic segmentation of Lung Region using
Watershed Segmentation in CXR and feature extraction of the
lung region using different transforms was developed. In our
work we have extract the feature using DCT, DWT, DST,
Curvelet and Bandelet Transform. The Feature extracted by
this transforms are analyzed using the statistical parameters
such as Mean, Median, Energy and Entropy. We have analyzed
from the result of the Statistical Parameter for the various
transform for Lung Nodule and Lung Non-Nodule image of the
JSRT database, Curvelet and Bandelet Transform perform well.
In our future work, we will use this transform for feature
extraction of the Lung region for finding different
abnormalities in the Lung Region.
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