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Abstract

The bone scintigraphy scan is one of the most common diagnostic procedures in nuclear medicine for
detection of bone metastases. All involvements detected by the imaging process are called hot spots,
whether or not they indicate metastasis. Our major concern is the successful segmentation of hot spots,
which affects the accuracy of CAD systems developed for the detection of bone metastases. This study
examined the extent to which segmentation algorithms can affect the success rate of CAD systems, both
in terms of time and of making a correct decision. There is no perfect segmentation algorithm that will
provide excellent results for all image types. Using a system developed by the authors, the present study
compared several segmentation algorithms for detection of hot spots. Three algorithms known to
provide the best results (FCM, SOM, and LSAC) were examined for all details and from different
angles. Their performance was measured as 54%, 79%, and 88%, respectively, confirming LSAC as the
most appropriate segmentation algorithm. Data obtained by application of the segmentation algorithms
were used as input to an artificial neural network model, and the accuracy of the CAD system was
measured for each segmentation method. CAD system accuracy rates are 92.3% for LSAC, 86.93% for
SOM and 84.62% for FCM. The tolerance of other the segmentation algorithms (FCM and SOM) was
measured with reference to LSAC, returning error rates of 7.68% for FCM and 5.37% for SOM. In
experimental studies of a total of 706 pelvises, whole body, and chest images, results indicate that more
successful segmentation increases the accuracy of CAD systems.
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Introduction
Cancer is a broad group of diseases involving uncontrolled cell
growth, representing a major health problem worldwide. When
cells grow in an uncontrolled way, a lump known as a tumour
is formed. If the tumour is not treated, it may cause problems
that include pressure on other parts of the body or spread to
neighbouring tissues or to more distant structures through the
bloodstream or lymphatic system, which is called metastasis. It
has been estimated that 12 million people will be death due to
cancer by 2030 [1]. However, the mortality rate among cancer
patients can be reduced with early detection and healthy
treatment process. With early diagnosis, a significant
percentage of cancer cases can be cured by radiotherapy,
surgery, or chemotherapy, making it essential to fully exploit
advanced technological developments for early detection and
diagnosis.

A bone scan or bone scintigraphy is a nuclear scanning test to
identify certain abnormalities in the bone, primarily to help
diagnose a number of conditions that include cancer of the

bone or cancers that have spread (metastasized) to the bone.
The nuclear medicine technique involves injecting the patient
(usually into a vein in the arm or hand or, occasionally, in the
foot) with a small amount of radioactive material (e.g., 740
MBq of technetium-99 m-MDP) and then scanning with a
gamma camera, a device sensitive to the radiation emitted by
the injected material. Bone scintigraphy accounts for
approximately one-third of all nuclear medicine applications
and helps to determine treatment strategies by providing
important physiological information such as bone blood flow
and bone metabolism. Bone scintigraphy is applied as a whole-
body imaging technique for the investigation of all skeletal
metastatic disease, including malignant metastases in bone
tumours and bone and soft tissue infections [2].

The more diagnostic images radiologists must examine, the
greater is the rate of cancer and associated concerns [3]. The
complexity of the process and demands on time mean that
radiologists spend efficiency on diagnosis, which depends in
part on the person viewing the images. An expert can extract
more abnormal findings than the others; conflicting diagnoses

ISSN 0970-938X
www.biomedres.info

Biomed Res- India 2017 Volume 28 Issue 2 676

Biomedical Research 2017; 28 (2): 676-683



indicate that such differences depend on the person. One of the
most effective methods for resolving these conflicts is to
develop a computer system that will warn radiologists about
suspect diagnoses.

Background
The number of existing studies on this subject is limited; the
works cited here deal mainly with the accuracy, specificity, and
use of segmentation algorithms. A computer-aided diagnosis
system developed by Huang et al. achieved sensitivity of
92.1%, with a false detection error rate of 7.58% [4]. This
system used the fuzzy histogram thresholding method to
segment images into 46 regions, using standard deviation as a
final step for detection of bone lesions. The decision support
system developed by Ohlsson et al. had a sensitivity of 95%,
with a ratio of specificity of 64% [5]. In this study ATLAS was
used to segment the body into 12 regions. For segmentation of
hot spots, they used a band pass filtered version of the image.
Another CAD system, developed by Erdi et al. [6], estimated
the survival rate of prostate cancer patients by use of the region
growing method. In that system, the physicians placed a seed
into a specific bone lesion, and the computer then focused on
this area; this method can be classified as semi-automatic.
Recently, Yin and Chiu [7] have used a characteristic point-
based fuzzy inference system (CPFIS) to locate bone lesions.
In their study, local maximum segmentation was used for
detection of bone lesions. Based on the results of segmentation,
brightness and asymmetry were estimated as data inputs to
CPFIS. The sensitivity ratio was 91.5% (227 of 248), and the
rate of false positives (FPs) was 37.3%. Sajn et al. [8]
developed the first completely automatic method for scanning
bones and diagnosing the entire body. They used two-way
Gaussian filtering for detection of edges, which are the key
reference points to be used later for region localization. The
support vector machine (SVM) algorithm and ArTeX were
used for the purposes of diagnosis. Sajn et al.’s method
achieved a sensitivity ratio of 79.6% and a specificity ratio of
85.4%. Adopting segmentation algorithms that included an
active shape model for segmentation of the skeleton and a
region-specific threshold algorithm for hot spot detection,
Sadik et al. [9] used artificial neural networks to detect bone
lesions. The method achieved a sensitivity of 90% and a
specificity of 89%. Horikoshi et al. [10] used the same method
for segmentation and hot spot detection but with a Japanese
database. According to their results, the software trained on the
Japanese database achieved significantly higher performance;
this difference in results might be accounted for by physical
differences between European and Japanese patients. Al-Rifaic
et al. [11] used Stochastic Diffusion Search, a swarm
intelligence algorithm, to define metastasis; this method is used
for training junior doctors and medical students. The artificial
neural network (ANN)-based bone scan index (BSI),
developed by Nakajima et al. [12], is used to identify the extent
of bone metastasis. Regions inside a delineated skeleton with
intensities exceeding a threshold are defined as hot spots. This
threshold can vary across different parts of the skeleton. The
method is used to increase the reproducibility and accuracy of

diagnosis. In another study by Tokuda et al. [13], a system
called BONENAVI version 1 used a region-specific threshold
algorithm for hot spot detection, examining the system
according to cancer type. The metastatic effect of each type of
cancer differs, and it has been observed that different systems
do not achieve good results for some cancer types. For that
reason, it will be important to develop systems for all types of
cancer.

The techniques used in CAD systems have a major impact on
system performance. At this point, the present study diverges
from the detail of previous work examining the effect of
segmentation algorithms for hot spot detection on CAD
systems, as a comparison of algorithms in the field of bone
scintigraphy is considered useful for present purposes.

The rest of the study is organized as follows: In section 2, a
brief outline of CAD system and mathematical foundations of
compared segmentation algorithms are presented. Section 3
explains experimental results on CAD system performance.
Final section is discussion and conclusion.

Materials and Methods
This section composed of image dataset, proposed CAD
system, segmentation methods on hot spot segmentation.

Scintigraphy image dataset
In the present study, 706 images that belong to 75 patients were
used in the segmentation process, including whole body,
pelvis, and chest images; 150 of these were whole body bone
images. Details of the 75 patients used to determine the
accuracy of the segmentation process are set out in Table 1.
Nuclear medicine uses front and rear body images to determine
whether the patient has metastases. Pelvis, chest, or spot
images taken from other parts of the body indicate a decision
to examine the patient in greater detail when cancer is
suspected. Some of the patients had only spot images, and then
we could not use these patients in the CAD system. Therefore,
the number of patients used to test CAD system and
segmentation are different. All images were used to determine
hotspots.

Table 1. Study population.

Parameters Values

Number of patients 75

Sex 45 Male, 30 Female

Mean age 53 (range 26-89)

Number of images 706

The image formats used were DICOM and JPEG; DICOM data
were converted to JPEG format before processing.

Data were obtained from Suleyman Demirel University
Medical School and from Konya Education and Research
Hospital.
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The CAD system evaluation was based on 60 of 75 patients
and 150 whole-body bone scintigraphy images, taken between
2003 and 2013. The cases involved breast, prostate, and lung
cancer, which are widely seen in Turkey. Technically suitable
images were selected for use in the study; some images were
eliminated for reasons such as low resolution or faulty
shooting. In total, 130 images were used to test the system, of
which 100 images related to metastasis patients. Tenfold cross-
validation was used during the training and test phases. Sixty
per cent of the patients were male, and the average age was 57,
with a range of 30 to 87. Most of the patients were aged over
55 years. Of the 60 patients, 20 did not have metastases. BS
images were performed using 740 MBq (20 mCi) Tc-99 m
MDP. Images were obtained 3 h after 99 mTc-MDP injection
using a 15 cm/min rate throughout the entire body for at least
500,000 counts.

CAD system
CAD systems consist of pre-processing, hotspot segmentation,
feature extraction, feature selection, and classification, as
shown in the block diagram in Figure 1. Pre-processing is used
to strengthen hotspots to increase the accuracy of values at the
end of the segmentation process. Feature extraction is
performed following hotspot segmentation. Because of the
great number of factors that can impact negatively on the
efficiency of the system, the number of properties was reduced
here by using principal component analysis prior to the
classification process (metastases or not). Details of CAD
system was explained in previous study [14].

Figure 1. Flowchart of CAD system.

Hot spot segmentation
There is no segmentation method that can be applied to all
types of disease or image. In short, selection of an appropriate
segmentation method depends on the characteristics of the
problem to be solved and the structural features of the image
[15]. In the present study, we will examine only the most
relevant segmentation methods: SOM, LSAC, and FCM, many
derivatives of which are reported in the literature. There
follows a brief outline of segmentation algorithms used in this
paper.

Fuzzy C-means
The Fuzzy C-means (FCM) determines category of each pixel
using fuzzy memberships [16]. It allows more precise
computation of cluster membership. This algorithm has been
also used successfully for image clustering and for

segmentation of medical, geological, and satellite images [17].
The original FCM algorithm was used in the present study. Let
X=(xi, i = 1, 2 . . ., N) show an image with N pixels. Here, xi
represents feature data. Suppose that we want to divide into c
clusters this image. FCM algorithm minimizes iteratively the
objective function defined as Equation 1.

�� =∑� = 0
� ∑� = 0

� ������− ��2 (1)
Here, uki denotes the membership of pixel xi in the kth cluster.
vk is the kth class centre and || . || shows the Euclidean distance.
The parameter m controls the fuzziness. The membership
functions and cluster centres are updated according to Equation
2 and Equation 3.��� = 1∑� = 0� �� − ���� − �� 2 �− 1 (2)
�� = ∑� = 0� ������∑� = 0� ����   (3)
Figure 2 presents examples of Fuzzy C-means for bone
scintigraphy images.

Figure 2. FCM segmentation results.

Self-organizing map network (SOM)
A self-organizing map (SOM), a type of artificial neural
network, is a dimension reduction process that aims to decrease
the size of multi-dimensional inputs to reduce the size of
outputs. Organizing map neural networks are distinguished
from other ANN by their use of the neighbourhood function,
which protects the topological properties of the input space
[18]. The SOM receives input in the form of vectors and
divides these into groups. Each group must have similar
characteristics in terms of input values [19]. The SOM
algorithm is summarized below.

The training of the SOM network is the process of determining
the optimal weight vector using the input pattern of the
network. For each input pattern i, there is a wi=(wi1,
wi2,.......wim) weight vector in each t iteration. There is a
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winner neuron for each input sample (c) and each winning
neuron is calculated by using Equation 4. || . || Symbol shows
Euclidean distance measurement in Equation 4.� − �� = min� �(�)− ��(�) (4)
After determining the winning neuron, both c and weight
values of identified neighbouring neurons is calculated by
using Equation 5.�� �+ 1 = �� � + � �   ℎ�� �   � � − �� � (5)
t+1 refers to next iteration, α (t) learning rate, hci seen in
Equation (6) to the neighbouring function of winning neuron
usually identified as a Gauss function.

ℎ�� � = exp − �� − ��22�2 � (6)
Where ri shows the position of the i. unit on the map ve rc the
position of the winning unit on the map.

The algorithm has a repeating structure. Each iteration is called
an epoch. In each iteration, the algorithm takes input vectors
and finds the closest node (in terms of features) to the current
input record. The closest node is selected as the winning node.
The nodes around the winning node are adjusted by pulling it
closer to the input node [20]. The SOM algorithm grew out of
early neural network models, especially models of associative
memory and adaptive learning. The first application area of the
SOM was speech recognition. In its abstract form, the SOM
has come into widespread use in data analysis and data
exploration [21]. Sample SOM results are shown in Figure 3.

Figure 3. SOM segmentation results.

Level set active contour
Deformable models are active contour models used to assess
geometric size and shape of abnormal growth in any organs,
tumours, lesions, and so on as identified by any of the medical
imaging modalities [22]. Active contour model (known as
snakes) are one example of the general technique of matching a
deformable model to an image, using energy minimization.
From any starting point, a snake will deform into alignment
with the nearest salient feature in an image; such features

correspond to local energy minima created by processing the
image. Unlike most other techniques, snakes are always active
[23].

Here, the method we used for image segmentation in the level
set framework was based on a study by Li. Intensity
inhomogeneity occurs in many real images, especially in
medical images such as X-ray radiography/tomography and
magnetic resonance (MR) images because of technical
limitations or artefacts introduced by the object being imaged
[24]. These intensity inhomogeneity images include bone
scintigraphy images. Figure 4 clearly shows inhomogeneity in
the histogram of bone scintigraphy images. The chosen method
efficiently utilizes local image information and is therefore
able to segment images with intensity inhomogeneity.

Figure 4. Histogram of bone scintigraphy images.

The method used in this study has older derivatives called as
Mumford-Shah functional [25], Piecewise constant [26] and
Piecewise smooth. These studies have some advantages and
disadvantages. The basic approach used in this study involves
introducing a kernel function to define a local binary fitting
energy in a variation level set formulation so that local
intensity information can be embedded into a region-based
active contour model [24]. In this method, the energy function
seen in Equation 7 is redefined by using local binary fittings.

Consider a given vector valued I: Ω → Kd where Ω → Kn is
the image domain, and d ≥ 1 is the dimension of the vector I
(x). For gray level images, d=1, for colour images, d=3. Let C
be a contour in the image domain Ω. It is defined as x ε Ω for
each point of the following energy

εLBF (C, f1 (x), f2 (x))=λ1 ∫in(c) K(x-y) | I (y)-f1 (x) |2 dy + λ2
∫out(c) K(x-y) | I (y)-f2 (x) |2 dy → (7)

where λ1 and λ2 are positive constants, and K is a kernel
function with a localization property that K(u) decreases and
approaches zero as |u| increases, and f1(x) and f2(x) are two
numbers that fit image intensities near the point x. It is called
the point x the centre point of the above integral, and the above
energy the local binary fitting (LBF) energy around the centre
point x.

Gaussian is selected as a kernel function, which is one of the
important parameters of energy functions Equation 8.
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��(�) = 1(2�)(�/2��)�− � 2 /2�2 (8)
Energy function is then restructured again to suit the level set
algorithm Equation 9. With the level set representation, the
energy functional εx

LBF (C, f1 (x), f2 (x)) can be rewritten as

εx
LBF (Φ, f1 (x), f2 (x))=λ1 ∫ K σ (x-y) | I (y)-f1(x) |2 H (Φ (y)) dy

+ λ2 ∫ K σ (x-y) | I (y)-f2 (x) |2 (1-H (Φ (y))) dy → 9

Finally, the gradient flow derivative is applied for
minimization of energy function. We use the standard gradient
descent (or steepest descent) method to minimize the energy
functional (Equation 9). The derivation of the gradient flow is
similar to that of the PC and PS models in [26,27].

Sample results of level set active contour for bone scintigraphy
images are shown in Figure 5.

Figure 5. Results of LSAC segmentation.

Results

Evaluation of segmentation algorithms for hot spot
detection
All experiments were performed on a PC with 4GB of RAM
and a 2.53 GHz i5 processor. All segmentation algorithms were
applied to images, and we prepared a tool that evaluated the
performance of the algorithms by automatically comparing
expert and algorithm results and generating a value. This tool
expresses the value of intersection of results produced by the
specialist and the segmentation algorithm as a percentage.
Along with percentage success of segmentation, segmentation
time was also used as a criterion. Table 2 shows examples of
segmentation performance for six bone scintigraphy images
used in the study. The SOM and LSAC methods seem to show
more consistency than FCM with expert opinion. In relation to
time, FCM and SOM segmentation can be seen to require less
time than the LSAC method. As all three methods are iterative,
number of iteration is important parameter as well as time. The
numbers of iteration values for each segmentation algorithm
are based on the optimal solution. The FCM segmentation

algorithm required 100 iterations, with 300 iterations for LSAC
and 1000 iterations for SOM. Given the number of iterations, it
can be observed that FCM has the lowest accuracy with the
least number of iterations.

Table 2. Analysis of all methods presented.

Images Method Accuracy Time (s)

Figure 2a FCM 69 12.73

SOM 52 11.81

LSAC 94 28.5

Figure 2b FCM 45 10.52

SOM 82 6.01

LSAC 89 34

Figure 2c FCM 90 12.59

SOM 96 17.38

LSAC 98 29.71

Figure 3a FCM 65 8.72

SOM 89 12.13

LSAC 94 32.18

Figure 3b FCM 55 3.55

SOM 87 5.96

LSAC 93 4.99

Figure 3c FCM 42 3.47

SOM 78 2.06

LSAC 86 4.9

Average performance of the three different segmentation
methods was evaluated for all the images in the database;
results are presented in Figure 6. Of the three methods, FCM
achieved the lowest success rate with an accuracy of 54%;
SOM achieved 79%, and LSAC achieved 88%. When
accuracy, number of iterations, and time are compared across
the three methods, LSAC would seem to offer the optimal
solution.

Figure 6. Segmentation accuracy: average value for all images.

In addition to accuracy and time, other parameters affect the
CAD system, including the capacity to produce the same
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results each time. Known as stability, this requirement can be a
major weakness of ANN-based systems. For example, SOM
fails to return the same results in all circumstances because of
mapping errors. Figure 7 shows the most successful
segmentation that could be achieved for the pelvis image of a
patient in three attempts.

Figure 7. Segmentation of hip image using SOM.

Although it has high accuracy, the SOM algorithm shows the
problems that can arise in a fully automated system. The
advantages and disadvantages of the three methods are
presented in Table 3, based on parameters of starting, time, and
accuracy. All segmentation algorithms used in the test were
initiated manually. LSAC had the most starting parameters, and
this method appears to be a little more complicated than FCM
and SOM because of the number of parameters.

Table 3. Advantages and disadvantages of segmentation methods.

Parameter LSAC FCM SOM

Manual Start No No No

Starting parameters 5 2 No

Pre-processing Yes Yes Yes

Accuracy Most Least Better than FCM; worse than LSAC

Time Least Most Slower than FCM; faster than LSAC

Among the most important parameters used to follow disease
progression or diagnosis is the number of involvements in the
region. If the images show only a few hotspots, experts are
likely to be cautious about diagnosing metastases in this area.

In the present study, the total number of hotspots in the bone
scintigraphy images was calculated. The number of
involvements changes according to the patient's physical
structure and the amount of radiation absorbed into the body.

Both FCM and SOM identified many hotspot regions
incorrectly because the edges of objects did not express a fully
enclosed space. Because LSAC is based on a closed curve area,
it provides more realistic results in calculating the number of
hotspots.

Segmentation effects on CAD system
Final evaluations of the patients were conducted by an
experienced physician to establish whether or not the patient
had bone metastases. These assessments took account of
intensity and size changes, increasing and decreasing values in
high accumulation areas, patient medical records, results of
laboratory tests, and other available radiographic images. For
the final clinical evaluations, Grade 1 and 2 diagnostic criteria
were applied as follows [2].

Grade 1: If no bone metastasis is observed, the scintigraphy
pattern is either normal or exhibits typical hotspots associated
with fractures or degenerative changes. It can be concluded
that there are no radiographic or clinical data referring to bone
metastases.

Grade 2: As there are visible hot spots, localized, distributed,
and with intensity, there is potential for the existence of
metastases. These hotspots are not typical of fractures or
degenerative changes, and clinical assessment may infer the
existence of bone metastases.

Segmentation is an important factor that directly affects the
performance of CAD systems. Results using the LSAC
segmentation method as proposed are shown in Table 4. This
not only shows the result of CAD system but also result of
performance of physician when using CAD system. Accuracy
of the proposed CAD system only was 92.30%; expert-only
accuracy was 95.38%; and combined accuracy (physician and
CAD system) was 96.9%.

Table 4. Comparative performance of proposed CAD system.

Performance Criteria CAD Expert CAD+ Expert

Accuracy 92.3 95.38 96.9

Sensitivity 94 97.95 98

Specificity 86.67 87.5 90.6

The data relating to LSAC and FCM segmentation were
provided as input to the neural network system, and the results
were again compared. As shown in Table 5, the accuracy
values obtained using LSAC were significantly better than
those obtained by other methods. Error rates are calculated
according to LSAC-CAD.

Table 5. Effects of segmentation algorithms on CAD System.

Parameters SOM-CAD FCM-CAD

Accuracy 86.93 84.62

Error rate 5.37 7.68

Table 6 shows segmentation performance as obtained from the
SVM classifier and Bayesian analysis. The results obtained
using the ANN is better than those obtained using SVM and
Bayes in the three segmentation methods.
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Parameters LSAC-CAD FCM-CAD SOM-CAD

SVM 84.62 76.92 74.61

Bayesian 76.92 69.23 76.92

ANN 92.3 84.62 86.93

Discussion and Conclusion
In this study, the performance of different segmentation
algorithms in detecting hotspots in bone scintigraphy images
and the effects of segmentation on CAD performance were
compared in detail. A review of the relevant literature does not
make the success of segmentation algorithms explicit.
According to our results, LSAC performs better than other
segmentation algorithms, offering significant advantages such
as region growing, watershed, edge detection, and use of a
threshold value. LSAC algorithms can be formulated in terms
of an energy minimization function. Global or local image
information (such as shape or gray level distribution) can be
used in this formulation to efficiently perform image
segmentation. Number of hotspots was identified as a key
factor, and LSAC is far superior to other segmentation
algorithms in this respect. In particular, SOM lacks a stable
structure, although in some cases, good segmentation can be
achieved by SOM after several attempts.

The CAD system presented here represents an important step
for medical applications in its combined use of standard image
processing techniques, better segmentation algorithms, and
machine learning, offering hope for the future. The human
brain more easily interprets objects visually, and the proposed
system distinguishes hotspots using different colours so that
physicians can evaluate hotspots more quickly. Because of the
gamma camera, the bone scintigraphy images used here were
technically poor in terms of resolution, which makes the
evaluation of images more difficult. Better results can be
achieved using newer camera technologies. Our database was
drawn from two hospitals, and a larger experimental group
would ensure better accuracy of results. This study can also be
expanded by use of the multireader, specified by each type of
cancer. New segmentation algorithm for detection of hot spots
can be written.
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