Combatting foodborne illness: The role of food microbiology and antimicrobial resistance management.

Ahmed Khali*

Department of Food Hygiene, King Saud University, Saudi Arabia

Introduction

Food safety is a pressing global concern, with foodborne illnesses posing significant threats to public health, food security, and economies worldwide. With the growing complexity of food production and distribution networks, the risk of microbial contamination has increased manifold. Compounding this issue is the alarming rise of antimicrobial resistance (AMR)—a silent but potent threat emerging within food systems. Food microbiology, a critical discipline within public health and food science, is central to understanding, detecting, and mitigating these dual challenges [1].

In recent years, bacterial pathogens such as Salmonella, Escherichia coli, and Listeria monocytogenes have been at the forefront of major foodborne outbreaks. These microorganisms not only cause acute gastrointestinal distress but can also lead to chronic complications and fatalities, especially in vulnerable populations. Food microbiologists are now leveraging advanced detection technologies, surveillance systems, and cross-disciplinary strategies to address these evolving risks [2].

Understanding Foodborne Illness in a Globalized World. Foodborne diseases are caused by ingesting contaminated food or water carrying harmful microorganisms, toxins, or chemicals. Symptoms can range from mild discomfort to severe illness or death, depending on the pathogen and the individual's health status. According to the World Health Organization, foodborne diseases affect 1 in 10 people globally every year [3].

Modern food systems, characterized by mass production, global trade, and extended supply chains, have contributed to the rapid spread of foodborne pathogens. Climate change, urbanization, and changing dietary habits further exacerbate this issue. Food microbiology provides the scientific foundation for identifying contamination sources, analyzing outbreak patterns, and developing risk management protocols to ensure safer food production and consumption [4].

Antimicrobial Resistance: A Growing Threat in Food Safety. One of the most critical challenges facing food microbiology today is antimicrobial resistance—the ability of bacteria to withstand the effects of drugs designed to kill them. The overuse and misuse of antibiotics in animal agriculture have led to the emergence of resistant strains, which can transfer

from animals to humans via food, direct contact, or the environment [5].

Resistant pathogens such as Campylobacter and Salmonella are increasingly detected in food products worldwide. These strains render common treatments ineffective, prolonging illness, increasing healthcare costs, and raising the risk of severe outcomes. AMR surveillance and control within the food industry have become essential to reduce human exposure and preserve the efficacy of existing antimicrobials [6].

The Role of Food Microbiology in Detection and Prevention. Advancements in molecular diagnostics, such as polymerase chain reaction (PCR) and next-generation sequencing (NGS), are revolutionizing how microbiologists detect foodborne pathogens and resistance genes. These tools enable realtime, high-throughput monitoring of contamination in food processing environments, allowing for faster responses to potential outbreaks. In addition, food microbiology supports the development of hurdle technologies, which combine multiple preservation strategies—like pH control, and modified atmospheres—to inhibit refrigeration, microbial growth without relying on antibiotics or chemical preservatives. These innovations not only ensure food safety but also meet consumer demands for cleaner labels and minimally processed foods [7].

Surveillance and Policy in Combating AMR. To effectively combat AMR within the food chain, coordinated surveillance systems and regulatory frameworks are essential. National and international programs—such as the Global Antimicrobial Resistance Surveillance System (GLASS)—monitor trends in antimicrobial use and resistance across sectors. In Saudi Arabia, ongoing initiatives are integrating food microbiology research into public health strategies, improving the country's preparedness and response to AMR threats [8].

Food safety authorities, veterinarians, farmers, and food scientists must collaborate to implement One Health approaches, which recognize the interconnectedness of human, animal, and environmental health. Through responsible antibiotic stewardship, improved hygiene practices, and sustainable livestock management, the food industry can play a key role in curbing AMR. Emerging technologies such as biosensors, artificial intelligence (AI), and predictive analytics offer exciting opportunities for enhancing food safety. AI

Received: 01-Mar-2025, Manuscript No. AAFMY-25-166537; Editor assigned: 03-Mar-2025, PreQC No. AAFMY-25-166537(PQ); Reviewed: 17-Mar-2025, QC No AAFMY-25-166537; Revised: 24-Mar-2025, Manuscript No. AAFMY-25-166537(R); Published: 31-Mar-2025, DOI:10.35841/aafmy-9.2.259

^{*}Correspondence to: Ahmed Khali, Department of Food Hygiene, King Saud University, Saudi Arabia. E-mail: ahmed.alkh@ksu.edu.sa

models trained on microbial data can forecast contamination risks and guide preventive interventions. Biosensors capable of detecting microbial toxins in real-time are being tested for deployment in food manufacturing and retail environments.

Research is also focusing on microbiome modulation—managing beneficial microbial communities in food and the gut—to improve food safety and public health. Novel alternatives to antibiotics, such as bacteriophages and antimicrobial peptides, are under exploration for their potential to control pathogens without promoting resistance [9, 10].

Conclusion

The intersection of foodborne illness, antimicrobial resistance, and food microbiology defines one of the most urgent challenges in modern food systems. As pathogens evolve and resistance escalates, the role of food microbiologists becomes ever more critical in safeguarding global health. Through science, surveillance, and policy integration, the food industry and research community can mitigate these risks and build resilient, safe, and sustainable food networks. The work ahead demands innovation, collaboration, and an unwavering commitment to public safety in the face of microbial threats.

Reference

- 1. Wolf CA, Malone T, McFadden BR.Beverage milk consumption patterns in the United States: Who is substituting from dairy to plant-based beverages?.J Dairy Sci. 2020;103(12):11209-17.
- 2. Smith NW, Fletcher AJ, Hill JP, et al.Modeling the contribution of milk to global nutrition. Front nutr. 2022;8:1287.

- 3. Zhang X, Chen X, Xu Y, et al.Milk consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses in humans.Nutr Metab. 2021;18(1):1-8.
- 4. Paul AA, Kumar S, Kumar V, et al.Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns.Crit Rev Food Sci Nutr. 2020;60(18):3005-23.
- Eslami O, Shidfar F.Soy milk: A functional beverage with hypocholesterolemic effects? A systematic review of randomized controlled trials. Complement Ther Med. 2019;42:82-8.
- 6. Ludwig DS, Peterson KE, Gortmaker SL.Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. The lancet. 2001;357(9255):505-8.
- 7. Stroup DF, Johnson VR, Hahn RA, et al.Reversing the trend of childhood obesity.Prev Chronic Dis. 2009;6(3).
- 8. Harris JL, Graff SK.Protecting children from harmful food marketing: options for local government to make a difference.Prev Chronic Dis. 2011;8(5).
- 9. Phillips MM, Ryan K, Raczynski JM.Public policy versus individual rights in childhood obesity interventions: perspectives from the Arkansas experience with Act 1220 of 2003.2005;3:505-8.
- 10. O'Malley PM, Johnston LD, Delva J, et al. Variation in obesity among American secondary school students by school and school characteristics. Am J Prev Med. 2007;33(4):S187-94.