Colorectal surgery: Techniques, technology, patient care.

Daniel Osei*

Department of Colorectal Surgery, University of Ghana Health Sciences, Accra, Ghana

Introduction

The field of colorectal surgery is constantly evolving, with ongoing research focused on refining surgical techniques, improving patient recovery, and integrating advanced technologies. This study offers a comprehensive look at robotic versus laparoscopic surgery for rectal cancer. It's built on a large dataset, comparing thousands of patients. What we learn here is how these two advanced approaches stack up in terms of outcomes. The goal is to provide clarity on which technique might offer better benefits for specific patient groups, especially regarding safety and effectiveness in the short to medium term[1].

Looking at patient care, here's the thing about Enhanced Recovery After Surgery, or ERAS, pathways in colorectal surgery: they're designed to get patients back on their feet faster. This approach, supported by extensive evidence, significantly improves patient outcomes, reduces complications, and shortens hospital stays, highlighting the practical benefits of coordinated multidisciplinary care[2].

Regarding innovative surgical methods, transanal total mesorectal excision, often called TaTME, is a newer technique for rectal cancer, aiming for better visualization and a more complete removal of the tumor. Research delves into its short-term outcomes, shedding light on its safety, feasibility, and immediate effectiveness compared to traditional methods. It helps us understand the early impact of this innovative approach[3].

When we talk about colectomy for colon cancer, there's a big question: minimally invasive versus open surgery. This systematic review and meta-analysis carefully compares the oncologic outcomes. What this really means is looking at how effective these different approaches are at treating the cancer itself, focusing on long-term survival and recurrence rates. It's about ensuring patients get the best possible cancer care with the least invasive method that still ensures good results[4].

Technological advancements are also key. Fluorescence imaging, specifically using indocyanine green (ICG), is becoming a valuable tool in colorectal surgery. This systematic review and meta-analysis explores how this technique helps surgeons, particularly by improv-

ing visualization of blood supply to tissue and identifying structures like lymph nodes. The insights here are crucial for understanding how ICG can enhance surgical precision and potentially reduce complications like anastomotic leaks[5].

Artificial intelligence (AI) is also making its way into many fields, and colorectal surgery is no exception. This systematic review explores the current landscape of AI applications in this specialty. It covers everything from preoperative planning and intraoperative guidance to postoperative prediction and training. The article lays out where AI stands today and gives us a glimpse into its potential to revolutionize how we approach colorectal conditions, emphasizing precision and personalized patient care[6].

For certain rectal cancer patients, organ preservation through a 'watch-and-wait' approach is a serious consideration. This study focuses on patient selection and outcomes for this non-operative management strategy. It really highlights the importance of careful staging and multidisciplinary discussion to identify those patients who might benefit most from avoiding surgery, while still achieving excellent oncological results and preserving quality of life. It's about finding the right treatment for the right patient[7].

In terms of less invasive options, percutaneous endoscopic colostomy, or PEC, offers a clear picture of when PEC is indicated, what kind of outcomes patients can expect, and the potential complications that might arise. This systematic review is a valuable resource for clinicians considering this technique, providing a balanced view of its utility and limitations in managing challenging cases of constipation, fecal incontinence, or intestinal obstruction[8].

Comparing single-port versus multiport laparoscopic colectomy for colorectal cancer is a hot topic. This systematic review and meta-analysis really digs into the short-term outcomes. It helps clarify whether the benefits of a single incision, like potentially less pain and better cosmesis, come with similar safety and effectiveness as the traditional multiport approach for cancer surgery. It's about weighing the advantages and disadvantages of each technique to guide surgical decisions[9].

Finally, intraoperative imaging-guided surgery for colorectal cancer

*Correspondence to: Daniel Osei, Department of Colorectal Surgery, University of Ghana Health Sciences, Accra, Ghana. E-mail: daniel.osei@ughealth.edu.gh

Received: 04-Jul-2025, Manuscript No. aaasr-212; Editor assigned: 08-Jul-2025, Pre QC No. aaasr-212 (PQ); Reviewed: 28-Jul-2025, QC No. aaasr-212; Revised: 06-Aug-2025, Manuscript No. aaasr-212 (R); Published: 15-Aug-2025, DOI: 10.35841/2591-7765-9.3.212

is an evolving field, offering surgeons enhanced visualization during procedures. This systematic review brings together the current state of these techniques, whether it's fluorescence, ultrasound, or other advanced imaging modalities. The core idea is to improve tumor identification, assess resection margins, and locate lymph nodes more accurately, all aimed at achieving more precise and effective cancer removal. It gives a good overview of how technology is helping surgeons perform better[10].

Conclusion

The body of research on colorectal surgery highlights a strong focus on advanced surgical techniques and enhanced patient care. Studies rigorously compare robotic versus laparoscopic surgery for rectal cancer and minimally invasive versus open colectomy for colon cancer, prioritizing both short-term outcomes and long-term oncologic effectiveness [1, 4]. Innovative approaches like Transanal Total Mesorectal Excision (TaTME) and comparisons of single-port versus multiport laparoscopic colectomy further refine surgical precision and patient benefits [3, 9].

Significant emphasis is placed on optimizing patient recovery through Enhanced Recovery After Surgery (ERAS) pathways, which consistently demonstrate improved outcomes and shorter hospital stays [2]. For selected rectal cancer patients, organ preservation via a 'watch-and-wait' approach is a crucial consideration, aiming to maintain quality of life while achieving oncological success [7]. Less invasive procedures like Percutaneous Endoscopic Colostomy (PEC) also address specific colorectal conditions, with detailed reviews on their indications and outcomes [8].

Technological advancements are revolutionizing the field. Fluorescence imaging with Indocyanine Green (ICG) enhances visualization during surgery, improving precision and reducing complications [5]. Intraoperative imaging-guided surgery, utilizing various modalities, aims for more accurate tumor identification and margin assessment [10]. Artificial Intelligence (AI) is rapidly emerging across all surgical phases, from planning to prediction, promis-

ing personalized and precise patient care in the future [6]. These diverse studies collectively underscore a dynamic field driven by innovation, patient-centered approaches, and technological integration

References

- Jin-Qiang C, Chao W, Yang W. Robotic versus Laparoscopic Surgery for Rectal Cancer: A Propensity Score-Matched *Analysis of* 23,282 Patients. Ann Surg. 2024;279:e22-e30.
- Michael WK C, John CH F, Vivian CY C. Implementing an enhanced recovery after surgery (ERAS) pathway for colorectal surgery: A systematic review and meta-analysis. Surg Endosc. 2022;36:8645-8664.
- 3. Xiaohui L, Guiping X, Xiaobo L. Transanal total mesorectal excision for rectal cancer: a systematic review and meta-analysis of short-term outcomes. *Int J Colorectal Dis.* 2020;35:1-13.
- Mohammad A, Mohammad A, Zaid A. Minimally Invasive vs Open Colectomy for Colon Cancer: A Systematic Review and Meta-analysis of Oncologic Outcomes. Cureus. 2024;16:e53018.
- David M A, Michael L S, Alastair JJ H. Fluorescence imaging with indocyanine green in colorectal surgery: a systematic review and meta-analysis. Surg Endosc. 2022;36:7100-7110.
- Min Cheol K, Ho Seung S, Seung-Yong J. Artificial intelligence in colorectal surgery: A systematic review and future perspectives. World J Gastroenterol. 2023;29:2216-2234.
- Geertje AME v, Anneke MR v, Marloes v. Organ preservation in rectal cancer: patient selection and outcomes of a watch-and-wait approach. Eur J Surg Oncol. 2022;48:38-44.
- Yassin E, Robert SH G, Edward W L. Percutaneous Endoscopic Colostomy: A Systematic Review of Indications, Outcomes, and *Complications. Colorectal Dis.* 2023;25:440-450.
- Young Jae L, Jin-Sung K, Seok-Won K. Single-port versus multiport laparoscopic colectomy for colorectal cancer: a systematic review and metaanalysis of short-term outcomes. Surg Endosc. 2020;34:2795-2806.
- Xiaolin L, Yujia L, Qiuxuan L. Current status of intraoperative imagingguided surgery for colorectal cancer: A systematic review. Surg Oncol. 2024;50:101962.

Citation: Osei D. Colorectal surgery: Techniques, technology, patient care. aaasr. 2025;09(03):212.

aaasr, Volume 9:3, 2025 2