
Classification of EEG signals for wrist and grip movements using echo state
network.

Z.H. Khan1,2*, Nasir Hussain1,2, Mohsin I. Tiwana1

1National University of Science and Technology, H-12, Islamabad, Paksitan
2Riphah International University, I-14, Islamabad, Pakistan

Abstract

Brain-Computer Interface (BCI) is a multi-disciplinary emerging technology being used in medical
diagnosis and rehabilitation. In this paper, different techniques of classification and feature extraction
are applied to analyse and differentiate the wrist and grip flexion and extension for synchronized
stimulation using sensory feedback in neuro-rehabilitation of paralyzed persons. We have used an
optimized version of Echo State Network (ESN) to identify as well as differentiate the wrist and grip
movements. In this work, the classification accuracy obtained is greater than 96% in a single trial and
93% in discrimination of four movements in real and imagination.
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Introduction
The popularity of analysing brain rhythms and its applications
in healthcare is evident in rehabilitation engineering. Motor
disabilities as a consequence of stroke require rehabilitation
process to regain the motor learning and retrieval. The
classification of EEG signals obtained by using a low cost
Brain Computer Interface (BCI) for wrist and grip movements
is used for recovery. Using Movement Related Cortical
Potential (MRCP) associated with imaginary movement as
detected by the BCI, an external device can be synchronized to
provide sensory feedback from electrical stimulation [1]. The
timely detection, classification of movement and the real time
triggering of the electrical stimulation as a function of brain
activity is desirable for neuro-rehabilitation [2,3]. Thus, BCI
has an active role in helping out the paralyzed persons who are
not able to move their hand or leg [4]. Using BCI system, EEG
data is recorded and processed. The acquired data should have
the least component of environmental noise and artifacts for
effective classification [5]. EEG signals acquired from the
invasive method are found to exhibit least noise components
and higher amplitude. However, in most applications, a non-
invasive method is preferred. The human brain contains a
number of neuron networks. EEG provides a measurement of
brain activity as voltage fluctuations which are recorded as a
result of ionic current within neurons present inside the brain
[6]. Many people have motor disabilities due to the nerve
system breakdown or accidental failure of nerve system. There
are different methods to resolve this problem, e.g. neuro-
prosthetics (neural prosthetics) and BCI [3,7-9]. In neuro-
prosthetics, a solution of the problem is in the form of
connecting brain nerve system with the device and in BCI

connecting brain nerve system with computer [2]. BCI produce
a communication between brain and computer via EEG, ECOG
or MEG signals. These signals contain information of any of
our body activity [10]. Moreover, in addition to neuro-
rehabilitation, assistive robotics and brain control mobile
robots also utilizes similar technologies as reported recently
[11,12]. The signal processing of these low amplitude and
noisy EEG signals require special care during data acquisition
and filtering. After recording EEG measurements, these signals
are processed via filtration, feature extraction, and
classification. Simple first or second order Chebyshev or
Butterworth filter can be used as a low pass, high pass or a
notch filter. Some features can be extracted by using one of the
techniques from time analysis, frequency analysis, time-
frequency analysis or time-space-frequency analysis [13,14].
Extracted EEG signal further classify by using one of the
techniques like LDA, QDA, SVM, KNN etc. [15,16].

We aim to classify the wrist and grip movements using EEG
signals. This research will be helpful for convalescence of
persons having disabilities in wrist or grip. Our work is based
on offline data-sets, in which the EEG data is collected
multiple times from 4 subjects. We present the following major
contributions in this paper: First, the differentiation between
the wrist and grip movements has been performed by using
imaginary data as well as the real movements. Secondly, we
have tested multiple algorithms for feature extraction and
classification and used ESN with optimized parameters for best
results. This paper is organized as follows: section 2 describes
a low-cost BCI setup for EEG, section 3 deals with the DAQ
protocol, section 4 explains the echo state network and its
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optimization while section 5 discusses results obtained in this
research. Section 6 concludes the paper.

Figure 1. Emotiv EEG acquisition using P-300 standard.

Brain Computer Interface Design
Brain-Computer Interface (BCI) design requires a multi-
disciplinary approach for engineers to observe EEG data.
Today, a number of sensing platforms are available which
provide a low-cost solution for high-resolution data
acquisition. Developing a BCI interface requires a two-step
approach namely the acquisition and the real-time processing.
In off-line processing, the only requirement is to do the
acquisition. The data is acquired via a wireless network from
the pick-off electrodes arranged on the scalp of the subjects
[17]. One such available system is Emotiv, which is easy to
install and use. Emotiv headset with 14 electrodes and 2
reference electrodes, CMD and DRL, is used to collect data as
shown in Figure 1. All electrodes have potential with respect to
the reference electrode. Emotiv headset is a non-invasive
device to collect the EEG data as preferred in most of the
diagnosis and rehabilitation applications [18].

Table 1. Brain frequency bands and their significance.

Rhythm Frequency

(Hz)

Indication Diagnosis

Δ 0-4 Deep sleep stage Hypoglycaemia,
Epilepsy

υ 4-7 Initial sleep stage -

α 8-12 Closure of eyes Migraine, Dementia

β 12-30 Busy/Anxious thinking Encephalopathies,
Tonic seizures

γ 30-100 Cognitive/motor
function

-

µ 8-13 Motor imagery tasks Autism Spectrum
Disorder

It is important to understand the EEG signal format and
frequency content for pre-processing and offline classification.
Table 1 shows some of the indications of physical movements
and mind actions associated with different brain rhythms in
somewhat overlapping frequency bands. It is obvious that the

motor imagery tasks are associated with the µ-rhythm in 8-13
Hz frequency band [19].

Table 2. Results with neural network variants.

Technique Task Result Ref

ESN Wrist and finger
movement imagery

71% [20]

PNN Emotion 91.33% [21]

BPNN Imagine movement of
right, left-hand movement

85% [22]

PNN Cortical potential cursor
move

90% [23]

ESN Song, fist, rotate cube,

Count

Single trial 95%

Four task 65%

[24]

Figure 2. Wrist movement [25].

Figure 3. Grip movement [25].

Figure 4. Data acquisition protocol.

Data Acquisition Protocol
Data is recorded for real and imaginary movements. Firstly, the
wrist real movement data of right hand is recorded followed by
the grip movement and then imaginary movement data is
recorded for wrist and grip in the same scenario as shown in
Figure 2 and Figure 3 respectively. Data protocol is designed
for data recording [25]. The protocol is illustrated in Figure 4.
After the raw data is collected, a 4th order Butterworth filter is
applied. A rectangular window is applied with an overlap to
make small data sets. Classification and feature extraction
techniques are applied to classify the data.
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Initially, the subject is at calm position, and data recording
protocol video is started as follows:

1. Subject is at rest while EEG data recording is started.
2. EEG data recorded for relax position for 5 seconds.
3. Wrist flexion EEG data recorded for 5 seconds.
4. Calm time for 3 seconds.
5. Wrist extension EEG data record for 5 seconds.
6. Calm time for 3 seconds.
7. Wrist flexion EEG data recorded for 5 seconds.
8. Process continued for 60 times of EEG data recording.

A total of 60 trials from each subject, with 921 samples of 5
sec each were recorded. Data collection electrodes are shown
in fig 1, while motor cortex position is shown as highlighted
electrodes on skull [26]. Let’s assume that we have data E (t),
and this dataset is segmented into small segments by
windowing as in Equation 1. In our case the rectangle window
with t=921 samples is used.

y(t)=E(t)*rect(t)→(1)

There are challenging issues to handle the EEG signals in order
to recognize different tasks. First of all, the EEG signals have a
non-stationary pattern. Secondly, these signals have no specific
single pattern change which can be used to recognize a specific
task. To sum up, the human random task classification makes it
more difficult in the presence of noise and artifacts [27].

Figure 5. Block diagram of off-line classification.

Figure 6. Topo plot for wrist movement.

To overcome these problems; different signal processing
techniques, classifiers, and feature extraction algorithms are

used to recognize the specific tasks [7,8,19,24,28]. Many
research papers have been found to report algorithms for
different EEG classification tasks as shown in Table 2.

The offline classification task flow is shown in Figure 5. Pre-
processing is important to remove biases and noise from the
data. Before the feature extraction step, the data is passed
through referencing, filtering and signal enhancement stages.
The reference electrode should be placed where signal strength
is zero. In our case, the common reference electrodes are used
near the ear lobes for a zero potential.

Topo plots for grip and wrist movement
Motor cortex plots for right-hand wrist and grip movement are
shown in Figures 6 and 7. Rejection method encompasses
discarding contaminated EEG based on automatic or visual
inspection while subtraction encompasses the hypothesis that
the contaminated EEG contains a linear combination of
original EEG and the artifact.

Figure 7. Topo plot for grip movement.

Filtration and windowing
After acquiring the raw data, it is processed through the
windowing and filtration. For filtration, a band pass filter of
0.2-128 Hz is used with 512 Hz sampling frequency [29].
Fourth order Butterworth filter is used to remove the line noise
of 48-52 Hz. Windowing of signals is done after the filtration
for feature extraction. Chebychev and Gaussian window is
applied on the data set of size 52 × 1 with a step size of 0.1 s.

Feature translation
Feature extraction is related to the dimensionality reduction in
the sense that it transforms the high dimensional data to a
lower dimension. Choice of the method depends on the type of
BCI system, band power, Power Spectral Density (PSD), time-
frequency representation, Hjorth parameters, etc. For the linear
dimensional reduction technique, Principle Component
Analysis (PCA) is preferred as it maps the data linearly in such
a way that the variance in low dimensional data maximizes.
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Power spectral density method is used as a feature [4]. Band
power is the best discriminant between the imagination based
movement data. It falls within the alpha and beta bands with
frequency ranges comprising of 9-14 Hz and 18-26 Hz.

Classification results
For classification purpose, techniques used include the radius
basis function SVM, Quad SVM, QDA, LDA and the Naive
Bayesian with normal distribution [15,30-32]. As a linear
discriminant classifier, we used LDA, while for the non-linear
classification; Naive Bayes with normal distribution is used.
These classifiers are applied on EEG datasets after pre-
processing and filtering. Results of these classifiers are finally
compared with an Echo State Network (ESN) with optimized
parameters. A brief description of these classifiers is as
follows:

Linear discriminant analysis (LDA): In LDA, classification
of the different datasets is obtained via training and testing the
given dataset. The confusion matrix is used to quantify the
performance of the classification method. Performance is
evaluated on testing the dataset on the basis of given results.
Confusion matrix can be explained with the example. Let’s
start with binary classification. In binary classification, the
dataset is divided in two sets which are analysed on the basis of
occurrence of specific task. The confusion matrix is shown in
Table 3.

Table 3. Confusion matrix representation.

N=No. of dataset Predict “action 1” Predict “action 2”

Actual “action 1” TN FP

Actual “action 2” FN TP

The symbols presented in the above table are illustrated as
follows:

True negative (TN): Prediction of movement is “Move Up”
and actual result is also “Move Up”.

True positive (TP): Prediction of movement is “Move Down”
and actual result is also “Move Down”.

False negative (FN): Prediction of movement is “Move Up”
and actual result is not “Move Up”.

False positive (FP): Prediction of movement is “Move Down”
and actual result is not “Move Down”.

As an example, if we have 100 datasets of wrist movement, in
which 50 datasets are for the case when wrist is “move up” and
50 for the “move down” case, confusion matrix is constructed
as shown in Table 4.

Table 4. Confusion matrix example.

N=100 Predict

“Move up”

Predict

“Move Down”

Actual “Move up” 40 10

Actual “Move Down” 8 42

In this example as shown in Table 4, the prediction for up and
down movements, is shown , where 40 samples shows up-
movement while 10 shows that these doesn’t occur. On the
basis of this classification, following results are evaluated.

Accuracy of the classifier is described as:

Accuracy = (TP+TN)/Total number of samples.

Error Rate represents the un-classified data. It is defined as:

Error Rate = (FP+FN)/Total number of sample.

Error Rate = 1-Accuracy.

Sensitivity Rate shows the case when both prediction and
actual results are matched, i.e. Sensitivity = TP/Actual Yes.

False Positive Rate depicts the mismatch between the actual
and prediction.

False positive Rate = FP/Actual No

Specificity is the case when both prediction and actual results
are “No”.

Specification = TN/Actual “No”

Precision is achieved when prediction and actual result match.

Precision = TP/Predict “Yes”

Prevalence, when matched form occurs mostly is given as:

Prevalence = Actual Yes/Total

This explanation is summarized in Table 5.

Table 5. Confusion matrix explanation.

N=100 Predict “Move up” Predict “Move Down”

Actual

“Move up”

40 10 Actual Yes (50)

Actual

“Move
down”

8 42 Actual No (50)

Predict “Yes” (48) Predict “No” (52)

The experiment is executed for four subjects from where a
number of EEG datasets are recorded. After collecting EEG
datasets, whole signals are segmented. Then, these segments
are passed through the filters. In the present case, we used
Butterworth filter with Nyquist rate of 512 Hz. After filtration,
features are extracted from the dataset. These features help to
classify the data. As showed in Table 6. Then, LDA is applied
for classification from where the confusion matrix is
recovered.

Quadratic discriminant analysis (QDA): After
accomplishing the result from LDA, QDA is applied on the
EEG datasets. QDA is an advanced version of LDA. The part
of the QDA classifier that contrasts from the LDA classifier is
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the calculation of the discriminant functions. The LDA
discriminant functions are a simplified version of the QDA
ones, arrived at by using a single average covariance matrix
and dropping identical terms on all sides of the comparison
[33]. In practice, the calculation is simplified to being linear in
terms of x, instead of quadratic. The results are recorded in
Table 7. Both the Hjorth activity and mobility parameters were
used.

Naive bayesian (NB): In Naïve Bayes method, the probability
of the most probable class is established. The probability of
each of the instance of the class is found which have an unseen
instance. So, Bayesian classifier can be described as follows:

� ��|� = � �|�� � ��� �
Where, p (Cj | d) is the probability of instance “d” which is in
class Cj and p (d | Cj) is the probability of generating class at
instance “d” for a given class Cj. p (Cj) is the probability of
occurrence. P (d) is the probability of occurance of instance
“d”, so, in this equation, we want to compute the probability of
“d” which is is p (d | Cj) in the class Cj. Also, the probability of
having some feature in ‘d’ with the imagined probability is p (d
| Cj). Applying these concpets to the problem in hand, suppose
if we want to classify hand wrist and grip movements, initially,
there is no resource to distinguish this type of movement. So,
in Bayes method, the probability of data is a concern. We can
say that testing datasets are grip or wrist movements. It can be
represented as in form of wrist testing:� �����|������� = � �������|����� � ������ �������
And for the grip testing,� ����|������� = � �������|���� � ����� �������
This probability can be accessed via training dataset. In
training, the probability is made on the basis of feature vectors
that are extracted after the filtration and segmentation. So, final
Bayes is made as follows:� ��|� =   � ��1|�1 *� ��2|�2 *� ��3|�3 *� ��4|�4 *… *� ���|��
Naïve Bayes classification results are also presented in Table 7.

Echo-state Network for Classification
In machine learning, several different algorithms are in
practice. Artificial Neural Networks (ANN) and its variants
e.g. Feed-Forward Neural Networks (FFNN) and discrete-time
Recurrent Neural Networks (RNN) are some of the most
popular black-box modelling techniques in learning and
classification. Due to the limitations of RNN; as a result of
their complexity, computationally expensive training
requirements and difficulty in analysing lot of efforts were
concentrated towards simple approaches resulting in the
development of Echo State Network (ESN) [10]. It has been
reported that ESN fits in most of the situations by just

modifying the tuning parameters [34]. Also, it performs well in
the presence of artifacts. The classification steps in ESN
learning algorithm are shown in Figure 8.

Figure 8. ESN classification steps.

ESN is a supervised learning algorithm, in which there is a
training input signal

u (n) ε Rnu and output signal y (n) ε RNy.

Where, n = 1, 2 …T and ‘T’ is the total number of data set.
Initially, weights are assigned randomly and after that, they are
updated with training data set. So, we call them input and
recurrent weights, these are Win ε RNx∞(1+Nu) and W ε RNx × Nx.
With the training data set, reservoir set is made named x (n).
Linear readout weight Wout is computed from the reservoir set,
which minimizes the Mean Square Error (MSE). Finally, the
input data set is applied to final readout weights to compute
output y (n).

Reservoir data set is made with the following equation,�′(�) = tanh(��� 1;�(�) +��(� − 1)�(�) = (1− �)�(� − 1) + ��(�) (2)
Hyperbolic tangent function is used as follows:�(�) = sinh�cosh� = �� − �−���+ �−� = �2� − 1�2�+ 1 (3)
This hyperbolic tangent function is found to be more helpful
for the training data set as compared to the sigmoid function.
This is because of the reason that when a negative input is
applied it goes into indeterminant state, while hyperbolic
tangent function works in a deterministic manner.

Network output is y (n) ε RNy, which is:�(�) =���� 1;�(�); �(�) (4)
Some of ESN parameters are as follow:

• Output is linear neuron (linear system is useful for complex
and multivariate signals)

• Alpha (α) represents a smoothing factor that is a non-
negative number. A larger value represents a higher
smoothing factor.

• Eigenvalues are used as the weights of the dynamic
reservoir. These eigenvalues are used to train the dataset.
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• Finally, weights calculated on behalf of pseudo-inverse and
output weights are updated.

Eigenvalues are used to distinguish or to determine any change
in signal. First, the training is processed using no-motion data
and its eigenvalues are saved. In the second step, these
eigenvalues are applied on input dataset to analyse any change.

Table 6. Dependence of ESN accuracy on no. of hidden layers.

ESN

iteration

Hidden layers Accuracy%

I 50 88.39

II 70 97.23

III 90 97.85

IV 100 96.14

V 120 93.55

VI 140 91.71

VII 160 90.32

VIII 200 88.43

Single electrode output is examined by this method and results
are acquired. Figure 9 shows the original sequence and the
output of the ESN.
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Figure 9. ESN for network output.

After completing work on single electrode, results are made to
discriminate the different movements. The classification results
are presented in Table 7.

Results and Discussion
The classification results are shown in Table 7 where a
comparison is presented between the LDA, QDA, NB and
ESN_op algorithms for different movement types. For the real
vs. imaginary movement of the wrist and grip, it has been
found that on average, LDA and NB classifiers are showing
closer accuracies on the lower side while the QDA is better
classifying the movements as compared to the previous two.

On the other hand, ESN_op is showing the best accuracy in
both cases with accuracy above 90%. In comparing
classification of the real and the imaginary movements data of
both wrist and grip movements, it has been found that the LDA
and NB perform well for the former case, however for the
latter case, poor accuracies have been obtained. Likewise, the
QDA accuracy also drops for the classification of imaginary
wrist and grip movements. ESN_op also shows a slight
degradation in accuracy from 95.69% to 93.50% for imaginary
movements. Perhaps, due to relatively lower information in
imaginary data, rest of the algorithms show degraded
performance. But as the ESN_op is a novel, noise redundant
and robust algorithm, its performance still dominates.
Respective accuracies are obtained by calculating the
confusion matrices for the classifiers.

Table 7. Comparison of classification results.

Movement Signal Classifier Accuracy%

Real vs. Imaginary
movement

Wrist LDA 44.23

QDA 52.64

NB 41.59

ESN_op 93.06

Real vs. Imaginary
movement

Grip LDA 49.52

QDA 71.63

NB 56.25

ESN_op 96.07

Real movement Wrist Vs.

Grip

LDA 68.99

QDA 77.64

NB 65.38

ESN_op 95.69

Imaginary movement Wrist Vs.

Grip

LDA 46.63

QDA 50.96

NB 36.30

ESN_op 93.50

Conclusion
This paper describes an offline task classification for wrist and
grip movements in both imagination and real movements. The
classification is required in order to perform rehabilitation
using brain computer interface technology. Both wrist and grip
movements using real and imaginary data is used for the
classification. Several algorithms are used on the same data
while optimizing few of them for best possible depiction of
results. It has been found that the parameter Optimized ESN
(ESN_op) is performing the classification task with highest
accuracy as compared to LDA, QDA and NB. In future, the
online data will be used to detect real time movements using
this algorithm. The challenge of real time classification
involves less complexity of the algorithm on one side while a
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high performance and computationally efficient hardware on
the other side. We are targeting to achieve both in our future
research while using a High Performance Computing (HPC)
platform in our lab. Multichannel EEG data will be processed
and results will be available with less than a microsecond time
delay. A high performance multicore embedded architecture is
in the development phase for real-time protocol
implementation.
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