Chronic pain: Insights into mechanisms and management..

Fatima Khan*

Department of Primary Medicine, Aga Khan University, Karachi, Pakistan

Introduction

Understanding the predictors of chronic widespread pain is vital for early intervention. Genetics, psychological distress, and a history of localized pain have been identified as significant risk factors, synthesized from multiple prospective cohort studies [1].

Ketamine's efficacy in managing various chronic pain conditions has been thoroughly examined, revealing its potential for specific neuropathic pain and complex regional pain syndrome. Careful patient selection and administration protocols are crucial for maximizing benefits and mitigating risks [2].

Neuroinflammation plays a crucial role in both the onset and persistence of chronic pain. Insights into cellular and molecular mechanisms, including microglial activation and cytokine release, provide new avenues for developing innovative treatments targeting these inflammatory pathways [3].

Cognitive Behavioral Therapy (CBT) stands out as a highly effective intervention for chronic pain. Comprehensive reviews confirm its ability to significantly improve pain intensity, functional disability, and psychological distress, cementing its role in multidisciplinary pain management programs [4].

The use of cannabinoids for chronic non-cancer pain has been evaluated, suggesting a small to modest reduction in pain intensity for some individuals. However, the notable increase in adverse events necessitates a careful consideration of the risk-benefit profile in clinical practice [5].

The intricate relationship between the gut microbiome and chronic pain is gaining recognition. Microbial dysbiosis can impact pain perception through complex gut-brain communication, immune modulation, and neurotransmitter synthesis, opening new avenues for diagnostics and targeted therapies [6].

Virtual Reality (VR) offers a promising non-pharmacological approach to chronic pain management. By utilizing distraction, immersion, and exposure therapies, VR can effectively reduce pain intensity and distress, making it a valuable complementary tool, especially for conditions like neuropathic pain and fibromyalgia [7].

Digital Health Interventions (DHIs), including mobile applications and web-based programs, are proving to be effective in improving chronic pain outcomes. These interventions offer scalable and accessible support for self-management, leading to significant enhancements in pain intensity, physical function, and overall quality of life [8].

The biopsychosocial model remains a cornerstone for understanding chronic pain, emphasizing the intricate interplay among biological, psychological, and social factors. This holistic perspective is essential for developing integrated treatment approaches that address all facets of an individual's pain experience [9].

Glial cells, specifically microglia and astrocytes, are critical in the development and perpetuation of chronic pain. Their activation contributes to central sensitization and enhanced pain signaling, offering promising new strategies for managing refractory pain conditions through glia-targeted therapies [10].

Conclusion

Research into chronic pain highlights diverse etiologies, mechanisms, and interventions. Crucial factors predicting chronic widespread pain include genetics, psychological distress, and localized pain history, guiding early intervention strategies. Neuroinflammation, marked by microglial activation and cytokine release, is a key contributor, presenting new therapeutic avenues, alongside the significant role of glial cells in central sensitization. Emerging insights also show the gut microbiome's influence on pain perception via immune modulation and neural pathways, suggesting novel diagnostics and microbiome-targeted treatments.

Effective management strategies encompass both pharmacological and non-pharmacological approaches. Ketamine shows promise for specific neuropathic pain and complex regional pain syndrome, requiring careful patient selection. For non-cancer pain, cannabinoids offer modest pain reduction, but careful risk-benefit evaluation is necessary due to associated adverse events. Non-pharmacological interventions like Cognitive Behavioral Therapy (CBT) significantly improve pain intensity, functional disability, and psychological distress. Virtual Reality (VR) reduces pain through distraction

*Correspondence to: Fatima Khan, Department of Primary Medicine, Aga Khan University, Karachi, Pakistan. E-mail: fatima.khan@aku.edu.pk

Received: 07-Nov-2025, Manuscript No. aapcgp-218; **Editor assigned:** 11-Nov-2025, Pre QC No. aapcgp-218 (*PQ*); **Reviewed:** 01-Dec-2025, QC No. aapcgp-218; **Revised:** 10-Dec-2025, Manuscript No. aapcgp-218 (*R*); **Published:** 19-Dec-2025, DOI: 10.35841/aapcgp-8.4.218

and immersion, particularly for neuropathic pain and fibromyalgia. Digital Health Interventions (DHIs), such as mobile apps, offer scalable support for chronic pain self-management, showing improvements in pain, function, and quality of life. Underlying all these is the enduring biopsychosocial model, stressing the interplay of biological, psychological, and social factors for holistic treatment. This body of work underscores a multifaceted understanding of chronic pain, from its predictors and biological mechanisms to a range of integrated therapeutic options.

References

- Gary JM, Matthew B, Susanna P. Predictors of chronic widespread pain: a systematic review and meta-analysis of prospective cohort studies. *Arthritis Care Res* (Hoboken). 2021;73:992-1002.
- Maarten N, Joost vdH, Elise vdS. Ketamine for Chronic Pain: An Updated Systematic Review and Meta-Analysis. Anesthesiology. 2021;135:851-867.

- Yongjie Z, Xiaojuan L, Peng H. Neuroinflammation as a key contributor to chronic pain: mechanisms and therapeutic opportunities. *Biomed Pharma-cother*: 2022;151:113110.
- Amanda CW, Christopher E, Stephen M. Cognitive Behavioral Therapy for Chronic Pain: A Systematic Review and Meta-Analysis of *Randomized Controlled Trials. Pain.* 2020;161:1992-2003.
- Emily S, Gabrielle C, Wayne DH. Cannabinoids for chronic pain: a systematic review and meta-analysis of randomized controlled trials. *Pain*. 2019;160:1629-1641.
- Sowmya P, Shivani S, Soumya S. Understanding the role of the gut microbiome in chronic pain. World J Gastroenterol. 2023;29:2131-2146.
- Mark LJ, Manoj S, Joel P. Virtual Reality in Chronic Pain Management: A Systematic Review. J Med Internet Res. 2021;23:e25824.
- 8. Jorien vW, Marieke M, Maarten dJ. Digital health interventions for chronic pain: a systematic review and meta-analysis. *J Pain*. 2023;24:1107-1122.
- 9. Robert JG, Randall MD, Charles MB. The biopsychosocial model of chronic pain: recent advances and future directions. *J Pain.* 2020;21:1-10.
- Erin DM, Makoto T, Michelle RS. The role of glia in chronic pain: from basic science to clinical translation. *Brain Res.* 2020;1748:147047.

Citation: Khan F. Chronic pain: Insights into mechanisms and management.. aapcgp. 2025;08(04):218.

aapcgp, Volume 8:4, 2025