
Curr Pediatr Res 2016; 20 (1&2): 253-257  ISSN 0971-9032
www.currentpediatrics.com

Curr Pediatr Res 2016 Volume 20 Issue 1 & 2253

Introduction
Pseudomonas aeruginosa is a ubiquitous organism. 

It is found in environment and living sources like plants, 
animals and humans. Pseudomonas aeruginosa is also 
a major pathogen frequently implicated in Healthcare-
Associated Infections (HAIs), particularly in critically ill 
or immunocompromised patients [1,2].

Nosocomial infections caused by this organism are 
often difficult to treat because of resistance to different 
antibiotics. Multidrug resistance in P. aeruginosa results 
from the bacterium’s notable inherent antibiotic resistance, 
in addition to its ability to acquire and harbour diverse 
resistance determinants [3].

Acquired resistance is through the production of AmpC 
Beta Lactamases (AmpC), Extended Spectrum Beta 
Lactamases (ESBL) and Metallo Beta-Lactamases Enzymes 
(MBL). Resistance to β-lactam antibiotics is associated 
with production of ESBL which can hydrolyze oxyimino 
β-lactams such as cefotaxime, ceftriaxone, ceftazidime and 
monobactams, however, without any effect on cephamycins, 
carbapenems and related compounds [4,5].

AmpC β-lactamases preferentially hydrolyze 
cephalosporins and cephamycins and resist inhibition by 
clavulanate, sulbactam and tazobactam. MBLs hydrolyze 
carbapenems and other beta-lactams. Resistance to 
carbapenems is of great concern as these are considered 
to be antibiotics of last resort to combat infections by 
multidrug-resistant bacteria [6]. 

The Multidrug Resistant (MDR) isolates that are present 
in the hospital environment pose not only therapeutic 
problems but also serious concerns for infection control 
management. 

Material and Methods
The present study is a cross sectional study of a total 

of 237 consecutive non-repetitive isolates of P. aeruginosa 
obtained from 11,251 different clinical specimen, e.g. pus, 
urine, blood culture, respiratory tract, other samples like 
body fluid, drain fluid, etc. from hospitalized patients. The 
study was carried out in the Department from November 
2013 to October 2015. 

All the confirmed P. aeruginosa isolates were subjected 
to antimicrobial susceptibility testing by the Kirby-Bauer’s 
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disc diffusion method as per the Clinical and Laboratory 
Standards Institute (CLSI) guidelines [7,8].

β-Lactamase Detection Tests

A. ESBL production by phenotypic confirmatory 
disk diffusion test [8]: Combined disk diffusion 
method was done using cefotaxime (30 μg) and 
ceftazidime (30 μg) disc alone and in combination 
with clavulanic acid disc (30/10 µg). The test 
organism was inoculated on Muller Hinton Agar 
plate; discs were placed and incubated overnight 
at 37°C. 

Interpretation: - Isolates showing zone of inhibition 
of ceftazidime plus clavulanic acid disc ≥ 5 mm 
than those of ceftazidime disc alone was interpreted 
as ESBL producers (Colour plate Figure 1).

B. MBL productiondone by the disk potentiation 
test [9]: Two 10 μg imipenem disks were placed 
on the plate, and appropriate amounts of 10 μL of 
EDTA solution were added to one of them to obtain 
the desired concentration (750 μg). The inhibition 
zones of the imipenem and imipenem-EDTA disks 
were compared after 16 to 18 h of incubation.

Interpretation: - An increase in zone size of ≥ 7 mm 
around the Imipenem-EDTA disk as compared to 
the imipenem only disk was recorded to be MBL 
producers (Colour plate Figure 2).

C. AMPC β- Lactamase detection: Screening 
test was performed by cefoxitin (30 µg) disk. 
Isolates that yielded a zone diameter less than 18 
mm (screen positive) were further subjected to 
confirmatory testing by disc antagonism test and 
three dimensional tests.

1) Disk antagonism test [10]: Test isolate with a 
turbidity equivalent to that of 0.5 McFarland 
standards was spread over a Mueller Hinton agar 
plate. Cefotaxime (30 µg) and cefoxitin (30 µg) 
disks were placed 20 mm apart from centre to 
centre. Isolates showing blunting of cefotaxime 
zone of inhibition adjacent to the cefoxitin disc 
were screened as positive for AmpC betalactamase 
(Colour plate Figure 3).

2)  Modified three dimensional test for AmpC [4]: 
Fresh overnight growth from Mueller Hinton 
agar was transferred to pre-weighed sterile micro 
centrifuge tube. Technique was standardized to 
obtain 10-15 mg of bacterial weight for each 
sample. Growth was suspended in peptone water 
and was pelleted by centrifugation at 3000 rpm 
for 5 min.

Crude enzyme extract was prepared by repeated freeze 
thawing (five rounds) Lawn culture of e. coli ATCC 
25922 was prepared on Mueller Hinton agar plates and 
cefoxitin (30 µg) discs were placed on plate. Linear slits 
(3 cm) were cut using a sterile surgical blade 3 mm away 
from cefoxitin disc. Small circular wells were made on 
slits at 5 mm distance, inside the outer edge of slit, by 
stabbing with sterile Pasteur pipette on agar surface. The 
wells could easily be loaded with enzyme extract in 10 µl 
increments until well was filled to the top. Approximately 
30-40 µl of extract was loaded in wells. The plates were 
kept upright for 5-10 min until the solution dried and 
were then incubated at 37°C overnight. Enhanced growth 
of surface organism at point where the slit inserted zone 
of inhibition of cefoxitin was considered a positive three 
dimensional test and was interpreted as evidence of AmpC 
beta-lactamases.

Interpretation: Isolates showing clear distortion of zone 
of inhibition of cefoxitin were taken as AmpC producers. 

 
Figure 1. ESBL production by P. aeruginosa

 
Figure 2. MBL production by P. aeruginosa

 
Figure 3. Inducible AmpC β-lactamase production in 
P. aeruginosa
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Isolates with no distortion were recorded as non AmpC 
producers. Isolates showing minimal distortion were 
considered as indeterminate strains. 

Results
Antibiotic sensitivity testing of P. aeruginosa, in 

present study, revealed maximum resistance to (63.71%) 
piperacillin, followed by ciprofloxacin (62.87%), 
tobramycin (53.16%), ceftazidime (51.05%), cefepime 
(49.79%), aztreonam (49.37%), gentamicin (47.68%), 
norfloxacin (47.68%), piperacillin/tazobactum (42.19%) 
and amikacin (37.97%). Low resistance were seen to 
imipenem (21.94%), polymyxin B (05.49%) and no 
resistance to colistin (Table 1).  

As high resistances were seen to beta-lactum 
antibiotics we tested for beta-lactamase production 
in P. aeruginosa. We found multiple beta-lactamase 
production in Pseudomonas spp. AmpC to be most 
common β-lactamases followed by ESBL and MBL 
respectively. Multiple β-lactamase production was seen in 
21.52% isolates, i.e., production of 2 or 3 β-lactamases 
simultaneously (Table 2).

Out of 237 P. aeruginosa isolates tested, cefoxitin 
resistance was evident in 218 (91.98%) isolates while 82 
(34.60%) isolates were confirmed to be AmpC producer. 
Among the test isolates, 68 (28.69%) were detected 
as inducible AmpC producers while 14 (5.91%) of the 
isolates were confirmed to be non-inducible (Table 3).

We found co-expression of various β-lactamases in 
multidrug resistant clinical isolates of Pseudomonas 
aeruginosa. In present study 10.12% isolates showed 
co-existence of AmpC+MBL, 8.44% were having 
ESBL+AmpC and 2.95% isolates were having co-
existence of all three ESBL+AmpC+MBL. Expression of 
AmpC and MBL simultaneously was found to be the most 
common mechanism of drug resistance in present study 
(Table 4). 

Furthermore, all beta-lactamase producing isolates 
of Pseudomonas aeruginosa were resistant to 3 or more 
antibiotic classes indicating multidrug resistance.

Discussion
β-Lactamases in P. aeruginosa

There are variable reports of different β-lactamases 
production in P. aeruginosa species. In present study, AmpC 
β-lactamase was found to be most common β-lactamase 
in Pseudomonas aeruginosa isolates. Rodrigues et al. 
[11], Kumar et al. [6], Altun et al. [12] have also found 
AmpC to be most common β-lactamase. But Nagdeo et al. 
[13], Goel et al. [14] reported ESBL and MBL to be most 
common β-lactamase among Pseudomonas aeruginosa in 
their study.

The percentage of AmpC β-lactamases in present study 
is similar to Kumar et al. [12] (32.7%), Nagdeo et al. [13] 
(30.88%).

Inducible AmpC (28.69%) (Table 4) in present study 
is similar to findings of Rodrigues et al. [11] (26.5%), 
Bhattacharjee et al. [15] (22%) and Kumar et al. [6] 
(27.7%). Non-inducible AmpC (5.91%) in present study is 
similar to findings of Kumar et al. [6] (5%) butin contrasts 
with Rodrigues et al. [11] (32.4%) and Upadhaya et al. 
[16] (52.4%).

The ESBL production in present study (21.94%) is 
comparable with Aggarwal et al. [17] and Peshattiwar et al. 
[18] (22.22%) and Sheikh et al. 2015 (25.13%) [19]. These 
observations suggest that the ESBLs which were generally 
widespread among members of Enterobacteriaceae are 
also increasingly found in P. aeruginosa.

MBL production in present study (16.87%) is 
comparable with Attal et al. [20] (11.4%) and Bashir et 
al. [21] (11.66%). In present study, multiple β-lactamase 
production was present in 21.52% isolates which is 
comparable with Rodrigues et al. [11] (22.1%), Kumar et 
al. [6] (23.76%) and Goel et al. [14] (23.08%). Nagdeo 
et al. [13] (28.57%) and Upadhaya et al. [16] (29.7%) 
showed slightly higher percentage of multiple β-lactamase 
production as compared to present study. The differences 
seen in the percentage and the type of β lactamases 
is probably due to the local hospital antibiotic policy 
resulting in drug pressure and development of resistance 
by different enzyme expression.

Co-Expression of β-Lactamases in Pseudomonas 
aeruginosa

The incidence of coexistence of different β-lactamases 
is present study is comparable with Nagdeo et al. [13], 
Goel et al. [14]. Co expression of MBL and AmpC in 
present study was found to be highest among all co 
expressions. Similarly Upadhyay et al. [16], Kumar et 
al. [6], Nagdeo et al. [13] and Salimi et al. [22] had got 
MBL+AmpC coexistence higher than other combinations 
of beta lactamases. Upadhyay et al. [16] (46.6%) and 
Salimi et al. [22] (81%) reported higher percentage of 
MBL+AmpC co-existence. Incidence of co-expression 
of AmpC+ESBL was lower in our study as compared 
to incidence from Rodrigues et al. [11] (22.1%) and 
Easwaran et al. [23] (68.71%).

Antibiotic Disc P. aeruginosa (%)
Piperacillin (100 µg) 151 (63.71)

Piperacillin/Tazobactum (100/10 µg ) 100 (42.19)
Ceftazidime (30 µg) 121 (51.05)
Cefepime (30 µg) 118 (49.79)

Aztreonam (30 µg) 117 (49.37)
Imipenem (10 µg) 52 (21.94)
Colistin (10 µg) 00 (00.00)

Polymyxin B (300 units) 13 (05.49)
Gentamicin (10 µg) 113 (47.68)
Tobramycin (10 µg) 126 (53.16)
Amikacin (30 µg) 90 (37.97)

Ciprofloxacin (5 µg) 149 (62.87)
Norfloxacin (10 µg) (n=44) 21 (47.72)

Table 1. Antibiotic resistance pattern of Pseudomonas 
aeruginosa
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Multiple β-lactamase producing P. aeruginosa can 
cause major therapeutic failure and pose a significant 
clinical challenge if they remain undetected. Since these 
organisms also carry other drug-resistant genes the only 
viable treatment option remains the potentially toxic 
Polymyxin B and Colistin [24].

The isolates producing different β-lactamase in 
present study were found to be multidrug resistant, i.e., all 
AmpC, ESBL, MBL producing isolates of P. aeruginosa 
were resistant to ≥ 3 antibiotics. This correlates with the 
findings of De et al. [25], Peshattiwar et al. [18], Bashir 
et al. [20] and Salami et al. [22] which showed all MBL 
isolates to be multidrug resistant. Similar to present study, 
Upadhaya et al. [16] also reported all AmpC producers to 
be multidrug resistant. Glupczynski et al. [26] reported 
100% ESBL producers to be multi-drug resistant similar 
to present study.

The finding of multidrug resistance among β-lactamase 
producing P. aeruginosa could be due to co-existence of 
genes encoding drug resistance to these antibiotics on the 
plasmids, transposons and chromosomes carrying these 
beta-lactmases.

Conclusion
The present study emphasizes production of multiple 

β-lactamase enzymes by P. aeruginosa leading to 
multidrug resistance. Early detection of these β-lactamase 
producing isolates in a routine laboratory could help 
prevent treatment failure, as often the isolates producing 
this enzyme show a susceptible phenotype in routine 
susceptibility testing. 

Furthermore, strict implications of antibiotic policies 
and measures to limit the indiscriminate use of antibiotics 
in hospital environment should be undertaken to minimize 
the emergence of this multiple β-lactamase producing 
organism. Thus microbiologists in India have a very 
important role in prevention of spread of this dreaded 
multidrug resistant pathogen across the world.
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