International Journal of Pure and Applied Zoology Volume 9, Issue 1, pp:9-18, 2021 http://www.ijpaz.com

Research Article

ISSN (Print) : 2320-9577 ISSN (Online): 2320-9585

AVIAN COMMUNITY STRUCTURE AT KESHOPUR WETLAND- A RAMSAR SITE IN NORTH INDIA

Shifali Jangral¹, Nisha Vashishat^{2*}

Department of Zoology, Punjab Agricultural University, Ludhiana, India-141004

Article History: Received 07th January 2021; Accepted 21h January 2021; Published 28th January 202

ABSTRACT

The present study was performed to record the avian diversity of birds at Keshopur Chhamb Community Reserve; district Gurdaspur in the state of Punjab, India from June 2018 to May 2019. A total of 121 species of birds belonging to 19 orders and 47 families were observed during the study period. The maximum number (38) of the species in the area belonged to order Passeriformes. 27 winter migratory, 3 summer migratory and 91 resident species of birds were observed during study. One vulnerable (*Aythya ferina*) and six near threatened species were observed (i.e. *Aythya nyroca, Anhinga melanogaster; Mycteria leucocephala, Sterna aurantia, Psittacula eupatria, Threskiornis melanocephalus*) as per IUCN red list. A particular pattern of arrival and departure of migratory birds was observed. The winter migrants started to appear in October when the temperature started decreasing. The abundance of birds varied significantly during different seasons. Major variation was found in abundance of few species at three different sites of the same wetland. This study revealed that Keshopur Chhamb Community Reserve acts as a refuge site for many water birds including wader, waterfowl and many migratory and threatened species.

Keywords: Wetland, Diversity, Passeriformes, Migratory birds, Community reserve, Ramsar site

INTRODUCTION

Birds belong to a group of warm blooded vertebrates characterized by feathers, toothless beaked jaws, the hard shelled egg laying, high metabolic rate, a heart with four chambers and a strong yet light weight skeleton. About 10,000 species of birds are present on this tiny planet of Universe called Earth. Wetlands are areas of land that are permanently or temporarily covered with water. A large number of wetlands such as swamps, marshes, peatlands etc are present in India. Wetlands are counted among most distinctive and high yielding ecosystems (Rajasekar, Sharma & Yogalakshmi, 2008). These can be characterized as a halfway world between aquatic and terrestrial ecosystems as they exhibit characters of both ecosystems (Wagner, 2004). A wide diversity of aves depends upon wetlands during their migrant and procreation phase (Kuruvilla & Maria, 2016). Waterbirds and wetlands are inseparable components. They support an affluent arrangement of waterbird communities (Grimmett & Inskipp, 2007). They also serve as feeding and breeding grounds for a large number of economically important aquatic species other than birds such as crustaceans and fish (Gardner et al., 2016). About 10% of the bird species globally rely entirely on wetlands, while approximately the same number again utilizing them at some phase in their life span. This indicates that globally 20% (approximate) of the avian species utilize wetlands directly or indirectly for foraging, resting, breeding and overwintering (Rannestad et al., 2015). The population of birds dependent on wetlands is going through drastic decrease globally. These noticeable decreases are particularly due to immense loss of wetlands and conversion to land (Saunders et al., 2019).

In a survey conducted by Wildlife Institute of India, it was found that wetlands are dissipating every year at a rate of 2% to 3% (Bal&Dua, 2010). In wetlands, the diversity and abundance of bird species is directly associated with the developing vegetation and compounding (Kaminski & Prince 1981;Murkin, Kaminski & Titman, 1982). Wetlands provide food to birds in the form of plants, vertebrates and invertebrates. The aquatic birds are fairly receptive to the variations in wetlands (Odewumi et al., 2017). Their population size is directly affected by the food availability (Jagruti & Geeta, 2017). With the changes in wetlands, the aquatic birdlife is entirely affected which is an indication for us to understand whether the region is environmentally sound or getting contaminated (Odewumi, Okosodo & Talabi, 2017).

In Punjab, six wetlands are of international significance and Keshopur wetland is one such important wet land which has recently been declared as Ramsar site on 26 September, 2019. This wetland was the first declared community reserve of India (Mehta, 2014). The economy of rural areas surrounding it is intensely affected and the contribution from the local community has been recognized as a key factor for its protection. The reserve has many fresh water marshes

(natural wetlands) extending to an area of 850 acres and is the main site for migratory birds during the winter season. Due to its conversion into productive agricultural land and fish farms in the past by drainage department of the government, the wetland area has been reduced to its present size which was once spread to many thousand acres. The ecosystem is now on the edge of extinction and is highly threatened. The disturbance caused by humans directly or indirectly in wetland bird habitats led to decrease in strength of various populations of wetland birds. It is necessary to understand the causes for the decrease in the populations of various water birds and to find the effects of interference of humans. The inestimable information can be obtained on the standing and fitness of wetland by monitoring the birds of wetland. Only by knowing the structure of any region, the significance of local scenery for the conservation of birds can be understood (Harisha, 2016). Wetlands in India cope with enormous anthropogenic pressures as elsewhere, due to which the structure of bird community is strongly influenced (Kler, 2002; Verma et al., 2004; Reginald et al., 2007). Anthropogenic actions are known to cause disruptions to aquatic birds in their natural surroundings including recreation (Aikins, Gbogbo & Owusu, 2018). Invasive floral species also menace wetlands globally and are particularly troublesome for basins with immense nutrient inputs and transformed hydrology (Anderson et al., 2019). Even though these sites are adequately transformed by human actions, still providing suitable environment for many bird species (Bal & Dua 2010) therefore, the present study was planned to study community structure of birds at Keshopur wetland, a ramsar site.

MATERIALS AND METHODS

Study area

The Keshopur wetland is a freshwater ecosystem situated between the Latitude 32°05' 16.3" N and Longitude 75°24' 24.2" E at an altitude of 245 m having an area of approximately 344 hectares adjacent to the town of Gurdaspur, District Gurdaspur, Punjab. It allures thousands of migratory birds every year from Siberia and Central Asia in winters. The average annual temperature in Gurdaspur is 23.5°C. In a year, the average rainfall is 959 mm. This region was announced as community reserve under Section 36 C of Wildlife protection Act 1972 ensuing a Punjab Government Notification Number 34/13/2007/Ft-V/6133 dated June 25, 2007. Main sources of water at Keshopur wetland are rainfall and ground water. The total area covered by wetland is about 344 hectares comprised of fresh water marshes owned by Panchayats of five villages which is categorized into two parts. Miani (162 hectares), Dalla (62 hectares), Keshopur (55 hectares), Matwa (20 hectares) form the significant one conterminous block and Magarmudian (45 hectares) is a separate patch. Major area of the wetland is under human activities in the form of fish ponds and lotus cultivation. The wetland consists of diverse amount of vegetation.

The study area was divided into three sites for taking observations:

- 1. Site I
- 2. Site II
- 3. Site III

• Site I consisted of trees, shrubs, herbs, grasses, aquatic plants and climbers. It supports high vegetation of lotus. The site was located near the road and surrounded by agricultural fields.

• Site II was mainly consisted of small vegetation including herbs, shrubs, climbers, grasses, aquatic plants and some trees. Fish ponds were present at the site which was surrounded by agricultural fields.

• Site III which was a separate patch consisted of large number of aquatic plants and bamboo trees. Herbs, shrubs and grasses were also present. Watchtower was present at all the three sites to see the birds from a distance.

Bird surveys

Study of avifaunal diversity of Keshopur Chhamb Community Reserve was carried out between June 2018 and May 2019. Point count method and total count method were used to study and record the diversity of birds at different sites. In point count method, all the viewable birds were counted by choosing an appropriate vantage point. Approximately 10-15 minutes were spent at each point to avoid repeated counting of same bird individual. The other method total count was used where so ever possible, from specific points or walking around the wetland. Identification of birds residing and visiting selected sites was done on the basis of visual observations on their morphological features like shape, size, color of beak, feathers, wings, eyes, feet, legs and other parts of body by using binocular and comparing them with those described by (Ali, 2002). At different sites, observations of birds were recorded weekly for one and a half hour between 6:00-9:00 a.m. in the morning and 4:00-7:00 p.m. in the evening using binoculars of 10×50 . Weekly observations were made throughout the study but they were clubbed into a single monthly observation. Status of species was classified into resident (R), winter migrant (WM) and summer migrant (SM).

Data analysis

The data of four point counts recorded in one month was merged together. The community features such as Species richness, diversity, evenness and abundance were calculated to determine the bird's community at selected sites. Species richness describes the total number of species of birds in a given area. Relative abundance of birds (%) was calculated using the formula

 $ni/N \times 100.$

In this equation, ni represents the number of ith species and N represents the total number of birds seen.

Species diversity was calculated using Shannon-Weiner index as explained by (Spellerberg & Fedor,2003) using formula:

Annual abundance

 $H=-\sum Pi \log Pi$,

In this formula, Pi depicts the proportion of $i^{\mbox{\tiny th}}$ species of birds

'H' is referred as 'Shannon's index'

Species evenness also called as equitability and written as E was determined by the equation:

J=H/H'max,

Where,

a ...

H is the observed species diversity and H' max is the log of total number of species richness (Krebs, 1985). The value of E ranges from 0-1.

Annual abundance of avifauna was tabulated and analyzed using two way analysis of variance CPCS1 software was used to compare the number of species at each selected site. SPSS1 software (Kruskal-Wallis test) was used to compare the seasonal variation between the three sites.

RESULTS AND DISCUSSION

Total 121 species of birds belonging to 19 orders and 47

.

.

.

 Table 1: Bird species observed at Keshopur wetland along with their resident status, IUCN status and annual abundance.

. .

families were observed during the study period (Table 1). The maximum number of the species i.e. 38 found in study area were belonging to order Passeriformes also observed that order Passeriformes form the most predominant group in India with about 54% composition. Anatidae was the most abundant family having 11 species at our study site where as (Rawat & Rao, 2020) noticed Anatidae as least abundant family in Sheopur city of Madhya Pradesh. Muscicapidae family has the highest number of birds in India (Manakadan & Pittie, 2001) however six families showed more number of species than muscicapidae in present study. Total 107 species of birds were found at Site I. Eurasian Coot, Common Moorhen and Northern Shoveler were recorded to be the predominant bird species having annual abundance 14.10%, 13.36% and 10.93% respectively at this site. Total 103 species of birds were found at Site II in which Common Moorhen and Eurasian Coot were recorded as equally abundant species having annual abundance 16.4 and 15.40% respectively. Total 113 species of birds were found at Site III where Eurasian Coot, Common Moorhen and Northern Pintail were the predominant avian species having annual abundance 15.38%, 13.83% and 10.40% respectively.

Resident IUCN

S. No	Name of motion	Scientific name	tific name Order		IUUN	Annual abund		lance	
5. NO	Name of species	Scientific name	Order	status	Status	Site I	Site II	Site III	
	Accipitridae								
1	Black Kite	Milvus migrans	Accipitriformes	R	LC	0.47	0.42	0.56	
2	Lesser Spotted Eagle	Clanga pomarina	Accipitriformes	R	LC	0.35	0.27	0.34	
3	Oriental honey Buzzard	Pernis ptilorhynchus	Accipitriformes	R	LC	0.05	0.05	0.06	
4	Western Marsh Harrier	Circus aeruginosus	Accipitriformes	WM	LC	0.11	0.08	0.15	
	Alaudidae								
5	Ashy-crowned sparrow Lark	Eremopterix griseus	Passeriformes	R	LC	0.22	0.08	0.41	
6	Crested Lark	Galerida cristata	Passeriformes	R	LC	0.11	-	0.20	
	Alcedinidae								
7	Lesser Pied Kingfisher	Ceryl erudis	Coraciiformes	R	LC	0.01	0.12	0.04	
8	White-throated Kingfisher	Halcyon smyrnensis	Coraciiformes	R	LC	0.05	0.72	0.17	
	Anatidae	-							
9	Bar-headed Goose	Anser indicus	Anseriformes	WM	LC	1.18	-	0.68	
10	Common Pochard	Aythya ferina	Anseriformes	WM	VU	1.27	0.88	1.35	
11	Eurasian Wigeon	Mareca penelope	Anseriformes	WM	LC	7.02	5.57	7.92	
12	Ferruginous Duck	Aythya nyroca	Anseriformes	WM	NT	1.03	-	0.91	
13	Gadwall	Anas strepera	Anseriformes	WM	LC	7.54	5.95	8.01	
14	Greylag Goose	Anser anser	Anseriformes	WM	LC	1.55	1.15	1.59	
15	Indian Spot billed Duck	Anas poecilorhyncha	Anseriformes	R	LC	3.73	0.19	3.35	
16	Lesser Whistling Duck	Dendrocygna javanica	Anseriformes	SM	LC	0.48	0.22	0.52	
17	Mallard	Anas platyrhynchos	Anseriformes	WM	LC	5.68	5.56	6.15	
18	Northern Pintail	Anas acuta	Anseriformes	WM	LC	10.06	7.88	10.40	
19	Northern Shoveler	Spatula clypeata	Anseriformes	WM	LC	10.93	11.36	-	
	Anhingidae								
20	Oriental Darter	Anhinga melanogaster	Suliformes	R	NT	0.43	0.20	0.23	
	Apodidae								
21	Little Swift	Apus affinis	Apodiformes	R	LC	0.60	0.62	0.49	

	Ardeidae							
22	Black crowned Night Heron	Nycticorax nycticorax	Pelecaniformes	R	LC	-	0.09	-
22			Pelecaniformes	D	LC	0.40	0.02	0.3
23 24	Cattle Egret Eurasian Bittern	Bulbulcus ibis	Pelecaniformes	R R	LC LC	0.49	0.93	0.3
		Botaurus stellaris		R		-	0.02	
25	Great Egret	Ardea alba	Pelecaniformes		LC	0.34	0.55	0.2
26	Grey Heron	Ardea cinerea	Pelecaniformes	R	LC	0.12	1.10	0.0
27	Indian Pond Heron	Ardeola grayii	Pelecaniformes	R	LC	0.47	0.37	0.3
28	Intermediate Egret	Ardea intermedia	Pelecaniformes	R	LC	0.19	0.48	0.1
29	Little Egret	Egretta garzetta	Pelecaniformes	R	LC	0.06	0.11	0.0
30	Purple Heron	Ardea purpurea	Pelecaniformes	R	LC	0.08	0.61	0.0
31	Yellow Bittern Bucerotidae	Ixobrychus sinensis	Pelecaniformes	R	LC	0.30	0.24	0.4
32	Indian Grey Hornbill Campephagidae	Ocyceros birostris	Bucerotiformes	R	LC	0.07	0.02	0.0
33	White-bellied Minivet	Pericrocotus erythropygius	Passeriformes	R	LC	0.06	0.07	0.1
	Capitonidae							
34	Blue throated Barbet	Psilopogon asiaticus	Piciformes	R	LC	0.04	0.03	0.0
35	Brown headed Barbet	Psilopogon zeylanicus	Piciformes	R	LC	0.03	0.04	0.0
36	Coppersmith Barbet	Psilopogon haemacephalus	Piciformes	R	LC	0.06	0.05	0.0
	Charadriidae							
37	Little Ringed Plover	Charadrius dubius	Charadriiformes	WM	LC	-	-	0.3
38	Pacific Golden Plover	Pluvialis fulva	Charadriiformes	WM	LC	-	-	0.0
39	Red-wattled Lapwing	Vanellus indicus	Charadriiformes	R	LC	1.13	0.82	1.5
40	White tailed Lapwing	Vanellus leucurus	Charadriiformes	WM	LC	-	0.01	0.3
41	Yellow-wattled Lapwing	Vanellus malabaricus	Charadriiformes	R	LC	0.03	-	0.1
	Ciconiidae							
42	Asian Openbill	Anastomus oscitans	Ciconiiformes	WM	LC	0.06	0.18	0.0
		Mycteria				0.00		
43	Painted Stork Cisticolodae	leucocephala	Ciconiiformes	R	NT	0.03	0.02	0.0
44	Yellow-bellied Prinia	Duinin Aminantain	Passeriformes	R	LC	0.07	0.06	0.1
44		Prinia flaviventris	Passeriformes	K	LU	0.07	0.06	0.1
	Columbidae	<i>a</i> 1.						
45	Indian Ring Dove (Eurasian collared Dove)	Streptopelia decaocto	Columbiformes	R	LC	0.52	0.44	0.5
46	Laughing Dove	Spilopelia senegalensis	Columbiformes	R	LC	0.17	0.11	0.1
47	Oriental Turtle Dove	Streptopelia orientalis	Columbiformes	R	LC	0.06	-	0.0
48	Red Colared Dove (Red Turtle Dove)	Streptopelia tranquebarica	Columbiformes	R	LC	0.09	0.06	0.1
49	Rock Pigeon	Columba livia	Columbiformes	R	LC	0.46	0.54	0.6
50	Spotted Dove	Spilopelia chinensis	Columbiformes	R	LC	0.21	0.15	0.1
51	Yellow-footed Green Pigeon Coraciidae	Treron phoenicoptera	Columbiformes	R	LC	0.13	0.08	0.0
	Coraciidae	Conneiter						
52	Indian Roller	Coracias benghalensis	Coraciiformes	R	LC	0.15	0.07	0.1
	Corvidae	~	D 12					~
53	Common Raven	Corvus corax	Passeriformes	R	LC	0.48	0.34	0.5
54	House Crow	Corvus splendens	Passeriformes	R	LC	0.91	0.84	1.1
55	Indian Jungle Crow	Corvus culminatus	Passeriformes	R	LC	0.58	0.46	0.6
56	Rufous tree Pie (Indian treepie)	Dendrocitta vagabunda	Passeriformes	R	LC	0.16	0.03	0.1
	Cuculidae							
57	Asian Koel	Eudynamys scolopaceus	Cuculiformes	R	LC	0.11	0.13	0.1
58			Cuculiformes					0.5

	Dicruridae	D:						
59	Ashy Drongo	Dicrurus leucophaeus	Passeriformes	R	LC	0.09	0.06	0.
60	Black Drongo	Dicrurus macrocercus	Passeriformes	R	LC	0.17	0.14	0.
	Estrildidae							
61	Scaly breasted Munia	Lonchura punculata	Passeriformes	R	LC	0.22	0.13	0.
62	TricolouredMunia	Lonchura malacca	Passeriformes	R	LC	0.03	0.01	0.
	Falconidae							
63	Peregrine Falcon (Shaheen)	Falco peregrinus	Falconiformes	R	LC	0.07	0.05	0.
	Jacanidae							
64	Pheasant tailed Jacana	Hydrophasianus chirurgus	Charadriiformes	R	LC	0.17	0.22	
65	Laniidae Long tailed Shrike	Lanius schach	Passeriformes	R	LC		_	0.
05	Laridae	Lunius senuen	1 assernormes	K	LC			0.
66	Brown headed Gull	Chroicocephalus brunnicephalus	Charadriiformes	WM	LC	-	-	0.
67	Black headed Gull	Chroicocephalus ridibundus	Charadriiformes	WM	LC	-	-	0.
68	River Tern	Sterna aurantia	Charadriiformes	WM	NT	-	-	0.
	Meropidae							
69	Green Bee eater	Merops orientalis	Coraciiformes	R	LC	0.05	0.05	0.
70	Blue tailed Bee eater	Merops philippinus	Coraciiformes	SM	LC	0.02	-	0.
	Monarchidae							
71	Asian Paradise Flycatcher	Terpsiphone paradisi	Passeriformes	SM	LC	0.05	0.05	0.
	Motacillidae							
72	Western Yellow Wagtail	Motacilla flava	Passeriformes	WM	LC	0.02	0.03	0.
73	Grey Wagtail	Motacilla cinerea	Passeriformes	WM	LC	0.02	0.04	0.
74	Citrine Wagtail	Motacilla citreola	Passeriformes	WM	LC	0.02	0.02	0.
75	White browed Wagtail (Large pied)	Motacilla maderaspatensis	Passeriformes	R	LC	0.07	0.07	0.
76	Paddyfield Pipit	Anthus rufulus	Passeriformes	R	LC	0.13	0.14	0.
77	Long billed Pipit (Brown rock)	Anthus similis	Passeriformes	WM	LC	0.04	0.06	0.
78	Oriental Magpie Robin	Copsychus saularis	Passeriformes	R	LC	0.12	0.05	0.
79	Indian Black Robin	Copsychus fulicatus	Passeriformes	R	LC	0.14	0.15	0.
80	Bluethroat	Luscinia svecica	Passeriformes	R	LC	0.03	0.03	0.
	Nectariniidae							
81	Purple Sunbird Passeridae	Cinnyris asiaticus	Passeriformes	R	LC	0.08	0.04	0.
82	House Sparrow	Passer domesticus	Passeriformes	R	LC	0.25	0.30	0.
	Phalacrocoracidae							
83	Indian Cormorant	Phalacrocorax fuscicollis	Suliformes	R	LC	0.17	1.54	
84	Great Cormorant	Phalacrocorax carbo	Suliformes	R	LC	0.33	1.98	
85	Little Cormorant	Microcarbo niger	Suliformes	R	LC	0.13	3.44	
	Phasianidae	Eurove - 1:						
86	Black Francolin	Francolinus francolinus	Galliformes	R	LC	0.07	0.04	0.
	Picidae							
87	Black rumpedFlameback	Dinopium benghalense	Piciformes	R	LC	0.07	0.05	0.
	Ploceidae							
88	Baya Weaver	Ploceus philippinus	Passeriformes	R	LC	0.09	0.06	0.
89	Streaked Weaver	Ploceus manyar	Passeriformes	R	LC	0.13	0.10	0.
90	Black breasted Weaver	Ploceus benghalensis	Passeriformes	R	LC	0.10	0.07	0.

	Podicipedidae	Tuslasharatan						
91	Little Grebe	Tachybaptus ruficollis	Podicipediformes	R	LC	1.18	-	0.6
92	Black necked Grebe Psittaculidae	Podiceps nigricollis	Podicipediformes	WM	LC	0.91	0.26	0.1
93	Slaty headed Parakeet	Psittacula himalayana	Psittaciformes	R	LC	0.17	0.11	0.1
94	Plum headed Parakeet	Psittacula cyanocephala	Psittaciformes	R	LC	0.13	0.24	0.1
95	Rose ringed Parakeet	Psittacula krameri	Psittaciformes	R	LC	0.81	0.68	0.7
96	Alexandrine Parakeet	Psittacula eupatria	Psittaciformes	R	NT	0.29	0.15	0.1
	Pycnonotidae							
97	Red vented Bulbul	Pycnonotuscafer	Passeriformes	R	LC	0.39	0.32	0.4
98	White eared Bulbul	Pycnonotusleucotis	Passeriformes	R	LC	0.14	0.06	0.1
	Rallidae							
99	White breasted Waterhen	Amaurornis phoenicurus	Gruiformes	R	LC	0.36	0.22	1.2
100	Purple Swamphen	Porphyrio porphyrio	Gruiformes	R	LC	1.47	2.93	1.2
101	Common Moorhen	Gallinula chloropus	Gruiformes	R	LC	13.36	16.45	13.8
102	Eurasian Coot	Fulica atra	Gruiformes	WM	LC	14.10	15.40	15.3
103	Recurvirostridae Black winged Stilt	Himantopus himantopus	Charadriiformes	R	LC	-	-	0.9
	Rhipiduridae							
104	White throated Fantail	Rhipidura albicollis	Passeriformes	R	LC	0.02	0.01	0.0
105	Common Greenshank	Tringa nebularia	Charadriiformes	WM	LC			0.5
105	Common Sandpiper	Actitis hypoleucos	Charadriiformes	WM	LC		_	0.5
100	Marsh Sandpiper	Tringa stagnatilis	Charadriiformes	WM	LC	_	-	0.3
107	Spotted Redshank	Tringa stagnatus Tringa erythropus	Charadriiformes	WM	LC	_	-	0.5
100	Strigidae	Tringu er yinropus	Charactinionnes	VV 1V1	LC	-	-	0.5
109	Indian Eagle Owl	Bubo bengalensis	Strigiformes	R	LC	0.01	0.01	-
110	Spotted Owl	Strix occidentalis	Strigiformes	R	LC	0.01	0.01	_
110	Sturnidae	Sirix Occidentalis	Surghomes	K	LC	0.01	0.01	-
111	Asian Pied Starling	Gracupica contra	Passeriformes	R	LC	0.12	0.06	0.1
112	Bank Myna	Acridotheres ginginianus	Passeriformes	R	LC	0.36	0.29	0.5
113	Common Myna	Acridotheres tristis	Passeriformes	R	LC	0.73	0.80	0.8
	Sylviidae							
114	Common Tailor Bird	Orthotomus sutorius	Passeriformes	R	LC	0.06	0.05	0.1
	Threskiornithidae							
115	Glossy Ibis	Plegadis falcinellus	Pelecaniformes	R	LC	0.09	0.91	0.9
116	Indian Black Ibis (Red- naped Ibis)	Pseudibis papillosa	Pelecaniformes	R	LC	0.16	0.50	0.4
117	Black headed ibis	Threskiornis melanocephalus	Pelecaniformes	R	NT	0.04	0.09	0.0
	Timaliidae							
118	Common Babbler	Argya caudata	Passeriformes	R	LC	0.19	0.12	0.2
119	Jungle Babbler	Argya striata	Passeriformes	R	LC	0.54	0.51	0.6
	Upupidae							
120	Common Hoopoe	Upupa epops	Bucerotiformes	R	LC	0.40	0.28	0.3
120	Zosteropidae							
120					1			
	Oriental White eye	Zosterops	Doccoriformos	P	IC	0.06	0.01	0.0
120		Zosterops palpebrosus	Passeriformes	R	LC	0.06	0.01	0.0

As per IUCN red list (IUCN, 2020) 27 winter migratory, 3 summer migratory and 91 resident birds were observed during study, of those one species is vulnerable (Aythya ferina) and six near threatened species were observed (i.e. Aythya nyroca, Anhinga melanogaster, Mycteria leucocephala, Sterna aurantia, Psittacula eupatria, Threskiornis melanocephalus). (Suryakant, 2017) also reported Mycteria leucocephala and Threskiornis melanocephalus as near threatened species at Urban Wetlands of Kolhapur, Maharashtra, India. The endangered species can be conserved by studying and conserving their habitat. Most conservation plans for endangered species build on the conservation of habitats (Maleki, Baghdadi & Rahdari, 2019). There was no seasonal variation seen in the resident bird species as they were observed throughout the year at the study site, but there was a particular pattern of arrival and departure of migratory birds. The winter migrants started to appear in October when the temperature starts decreasing, elevating the diversity in winter season. Similar results were recorded by (Mukhopadhyay & Mazumdar, 2017) in Bongaon, West Bengal, India. Major variation was found in some species abundance at three different sites of the same wetland. Most of the migratory species recorded were winter visitors only following a particular pattern of arrival and departure. The maximum abundance was recorded in month of January. (Harisha & Hosetti, 2017) observed similar results at Dyamannana Lake, Karnataka, India. Maximum species richness was reported in the month of January and minimum in June at all the sites. Highest species diversity was found in the month of May and lowest in the month of October. Species Evenness was calculated highest in months May - July and lowest in October (Table 2). Several studies have shown that species richness and abundance of water birds inflates with the emerging vegetation cover in wetlands, especially during breeding periods when water birds are less mobile and more vulnerable to disturbance (VanRees-Siewert & Dinsmore, 1996; Froneman et al., 2001).

It was found that the Keshopur wetland having great vegetation diversity and is a major habitat site for waterfowl population especially during winters when winter migratory birds reside there (Table 3). However, it appears that vegetation development affects the composition of the waterfowl breeding population at any wetland (Kristin, Siewert & Dinsmore, 1996). Apart from providing food for herbivorous water birds such as seeds, leaves, tubers, and rhizomes, vegetation is a crucial habitat element and significantly influences water bird habitat usage. The Keshopur wetland provides a great diversity of vegetation for fauna. Emerging plants often provide protection and decrease human interference, which occurs very often at roosting and breeding sites in artificial wetlands (Hattori & Mae, 2001). Dense vegetation often supports invertebrate habitat and food requirements, and increases the viability of eggs or diapausing invertebrates, ultimately increasing their abundance, biomass, and diversity which increases food for water birds (Anderson & Smith, 2000).

The species were not uniformly distributed at the three sites under study area as the majority of winter migratory birds were observed in flocks preferring the ponds away from the road. It was because of more dense aquatic vegetation which protects the birds from severe climatic conditions and predators. (Brandolin & Blendinger, 2015) also showed in their study that more vegetated ponds provide better shelter to avifauna for their survival. The Eurasian coot was most abundant species found at this site. An important pond variable for the habitat selection by coots was emerging vegetation, probably because it contributed in protection against aerial predators. The luxury of emerging vegetation can also diminish competition with fishes. The adverse effects of fish on waterfowl may be mitigated to some degree by the high potency of ponds and lakes (Nieoczym & Kloskowski, 2018). As the Northern Shoveler was one of the most abundant species at the Keshopur a freshwater wetland, the best supporting evidence is from the study of

Month Site I			Site II			Site III			
	Richness	Diversity	Evenness	Richness	Diversity	Evenness	Richness	Diversity	Evenness
Jun-18	43.00	3.34	0.89	40.00	3.29	0.89	41	3.29	0.89
Jul-18	59.00	3.45	0.85	55.00	3.59	0.89	60	3.72	0.91
Sep-18	78.00	3.42	0.78	78.00	3.4	0.78	69	3.42	0.81
Oct-18	85.00	2.34	0.53	86.00	2.29	0.51	84	2.36	0.53
Nov-18	89.00	2.79	0.62	81.00	2.62	0.59	95	2.97	0.65
Dec-18	90.00	2.87	0.64	87.00	2.77	0.62	91	3.07	0.68
Jan-19	96.00	2.99	0.65	95.00	3.01	0.66	101	3.15	0.68
Feb-19	91.00	2.94	0.65	90.00	2.98	0.66	99	3.18	0.69
Mar-19	87.00	3.00	0.67	90.00	3.1	0.69	97	3.18	0.69
Apr-19	74.00	3.40	0.79	70.00	3.07	0.72	77	3.52	0.81
May-19	84.00	3.87	0.87	73.00	3.67	0.85	80	3.92	0.89

Table 2: Bird community characters Richness, Diversity and Evenness at three sites of Keshopur wetland

Table 3: Vegetation recorded at different sites of Keshopur Wetland	Table 3:	Vegetation	recorded at	different	sites	of Keshopur	r Wetland
--	----------	------------	-------------	-----------	-------	-------------	-----------

Common name Tre	Scientific name	Site I	Site II	Site III
Bamboo	Bambusa bambos	+	+	+
Banana	Musa spp	+	+	I
Ber	Zizyphus jujuba	+	I I	+
Guava	Psidium guajava	+	+	Т
Jamun	Syzygium cumini	+	I	+
Kher	Acacia catechu	+	+	+
Lebbek tree	Albizia lebbeck	+	T	+
Indian rosewood	Dalbergia sisso	+		+
Mulberry	Morus alba	+	+	+
Curry tree	Murraya koenigii	+	I	1
Poplar	Populus tremula	+	+	
Safeda	Eucalyptus sp.	+	+	
	rbs	1	I	1
Red chickweed	Anagallis arvensis	+	+	+
		+	+	
Asthma plant	Euphorbia hirta		+	+
Indian shot	Canna indica	+		+
Marijuana	Cannabis sativa	+	+	
Black nightshade	Solanum nigrum	+	+	+
Coffee senna	Senna occidentalis	+	+	+
False daisy	Eclipta alba	+	+	+
Goatweed	Ageratum conyzoides	+	+	+
Hairy fleabane	Erigeron bonariensis	+	+	+
Mustard	Brassica nigra	+	+	+
Onionweed	Asphodelus tenuifolius	+	+	+
Prickly chaff flower	Achyranthes aspera	+	+	+
Prickly Sow Thistle	Sonchus asper	+	+	+
Punarnava	Boerhavia diffusa	+	+	+
Sage weed	Salvia plebeia	+	+	+
Japanese morning glory	Ipomoea nil	+	+	+
Morning Glory	Ipomoea aquatica		+	
Shr				
Country mallow	Sida cordifolia	+	+	+
White Jute	Chorchorus capsularis	_	+	
Hopbush	Dodonaea viscosa	+	+	+
Pink morning glory	Ipomoea carnea	+	+	+
Rubber tree	Calotropis procera	+	+	+
West Indian lantana	Lantana camara	+	+	+
Aquati	2			
Mexican primrose willow	Ludwigia octovalvis	+		
Hornwort	Ceratophyllum demersum	+	+	+
Duckweed	Lemna major	+	+	+
Lesser duckweed	Lemna minor	+	+	+
Lotus	Nelumbo nucifera	+	+	+
Pondweed	Potamogeton spp	+	+	+
Water hyacinth	Eichhornia crassipes	+	+	+
Water chestnut	Trapa bispinosa	+	+	
Water thyme	Hydrilla verticillata	+	+	+
Clim	ibers			
Rosary pea	Abrus precatorius	+	+	+
Tick weed	Cleome viscosa	+	+	+
Gra				
Elephant grass	Typha elephantina	+	+	+
Munja	Saccharum munja	+	+	+
Nut grass	Cyperus rotundus	+	+	+
Scutch grass	Cynodon dactylon	+	+	+
Sugarcane	Saccharum officinarum	+		+
Rice	Oryza sativa		+	
Giant Reed	Arundo donax		+	_
Chari	Sorghum	+		_
Guria Grass	Chrysopogon fulvus			+

Int. J. Pure Appl. Zool., 9(1): 9-18, 2021

(Tietje & Teer, 2015) who observed that freshwater wetlands are of higher quality than saltwater wetlands for wintering Shovelers. The flocks of Cormorants were very frequently seen in one pond only near the poplar trees residing on the vegetation protruding from the water. They were also seen utilizing poplar trees for perching in groupsand may be for nesting sites also. Previous studies concluded that the higher the nest tree height, the higher the success rate for the breeding (Park et al., 2011). Therefore, the great cormorants may have migrated to areas with higher nesting trees (Lee, Yi & Sung, 2019). Ardeids prefer places where wide areas of wetlands or long banks are located (Boisteau & Marion, 2007). The number of Pheasant tailed Jacana was noticed significantly more in lotus vegetation. Pheasant-tailed jacana is always found in reservoirs where the coverage of aquatic vegetation with wide floating leaves is comparatively high (Gunaratne, 2013). The muddy reservoir beds deliver better foraging grounds for most migratory waders, such as Plovers and Sandpipers. Such small migratory wading birds are efficiently adapted for feeding on small insects, mollusks, worms, etc. (Harrison & Worfolk, 2011; Henkanaththegedara & Amarasinghe, 2015). Black-winged Stilts use a wide range of shallow water wetlands, both for breeding and forage (Pigniczki et al., 2019). They were mostly seen in muddy areas near ponds and shallow water ponds. Northern Pintail were found more abundant at this site as compared to the other two sites. (Yamaguchi et al., 2012) observed in their study that Northern Pintails migratory stop-over sites contained more freshwater wetlands, freshwater lakes and rivers, and other agricultural lands. Shorebirds favoured small mudflats and large bulrush areas over environments with a limited area of high vegetation (Zhenming et al., 2006).

Birds use wetlands as a source of feeding, drinking water, roosting, breeding and social interactions. The richness of avifauna found in present study at Keshopur Chhamb Community Reserve is the magnificent indicator of ecological health. The current condition of its conservation has shown that Keshopur wetland reduced to about 300 acres of the thousands of acres of land at one point has been restored to about 850 acres by the efforts of forest officials Unfortunately, because of the retrieving of land for construction and cultivation, silting, grazing in wetland catchments and the growing of weeds, wetlands are steadily decreasing with less than 1% of the land remaining under them in the Punjab state, compared to an average of 6% worldwide. That needs urgent action and community engagement to protect our natural heritage (Mehta, 2014).

CONCLUSION

In summary, the habitation of various resident and migratory birds recorded in our study shows that Keshopur wetland is an important habitat for wild birds, which could use it as a feeding, breeding, stopover and wintering site. It acts as a refuge site for many water birds including wader, waterfowl and many migratory and threatened species.

ACKNOWLEDGEMENT

Authors are thankful to Head, Department of Zoology, Punjab Agricultural University, Ludhiana for providing financial and technical support.

AUTHOR CONTRIBUTION STATEMENT

Both the authors made substantial contributions to the conception or design of the work. The problem was designed by Dr Nisha Vashishat. Data was taken and analyzed by Ms Shifali Jangral. Manuscript was designed by both the authors.

References

- VRajasekar, D., Sharma, J., Yogalakshmi, J. (2008). Participatory wildilife conservation in KeshopurChhamb Community Reserve (India's First) in Punjab – Past, Present and Future Management Strategies. Proceedings of 12th World Lake conference, 1247-1253.
- Wagner, M. (2004). Managing Riparian Habitats for Wildlife. Report No PWD BR W7000-306. Texas parks and Wildlife Department, Austin, 1-8.
- Kuruvilla, K., Maria, K.J.A. (2016). A study on the avifauna of Palakkal Kole Wetland, Thrissur: A Ramsar Site of South of South India. Int J Zoo Res., 13: 12-19.
- 4. Grimmett, R., Inskipp, T. (2007). Birds of southern India. Om Books International, New Delhi, India.
- Gardner, C.J., Andriamahenina, Z., Carro, A., Jones, T.G., Jasper, L.D. (2016). Rapid assessments and local knowledge reveal high bird diversity in mangroves of northwest Madagascar. Wetlan Eco Manag., 25: 45-58.
- Rannestad, O.T., Tsegaye, D., Munishi, P.K.T., Moe, S.R. (2015). Bird Abundance, Diversity and Habitat Preferences in the Riparian Zone of a Disturbed Wetland Ecosystem – the Kilombero Valley, Tanzania. Wetlan., 35: 521-532.
- Saunders, S.P., Hall, K.A.L, Hill. N., Michel, N.L. (2019). Multiscale effects of wetland availability and matrix composition on wetland breeding birds in Minnesota, USA. The Condor., 20: 1-15.
- Bal, R., Dua, A. (2010). Birds of Natural Wetlands of North-west Punjab, India. Our Nat., 8:72-81.
- Kaminski, R.M., Prince, H.H. (1981). Dabbling duck and aquatic macroinvertebrate responses to manipulated wetland habitat. J Wildli Manag., 45, 1-15.
- Murkin, H.R., Kaminski, R.M., Titman, R.D. (1982). Responses by dabbling ducks and aquatic invertebrates to an experimentally manipulated cattail marsh. Canadian Journal of Zoology., 60: 2324-2333.
- 11. Jagruti, R., Geeta, P. (2017). Feeding Guilds of urban birds of Vadodara city. Int J Fau Biol Stu., 4: 78-85.
- Odewumi, O.S., Okosodo, E.F., Talabi, O. (2017). Diversity and Abundance of Avian Species of Owena Multipurpose Dam, Ondo State, Southwest, Nigeria. J Biodiv, Biopro Dev, 4:1-6.
- Mehta, K. (2014). Birds Biodiversity and Conservation Status of Keshopur Community Reserve, Gurdaspur, Punjab. Int J Sci Res., 3: 23-27.
- 14. Harisha, M.N. (2016). Assessment of status, diversity and threats of wetland birds of Bathi Lake, Doddabathi Village,

Davanagere District, Karnataka, India. J Entom Zoo Stu., 4:586-590.

- Kler, T.K. (2002). Bird species in Kanjali Wetland. Tig Pap, 39: 29-32.
- Verma, A., Balachandran, S., Chaturvedi, N., Patil, V. (2004). A preliminary survey on the biodiversity of Mahul Creek, Mumbai, India. Zoos' Print J., 19: 1599-1605.
- Reginald, L.J., Mahendran, C., Kumar, S.S., Pramod, P. (2007). Zoo' Pri J., 22: 2944-2948.
- Aikins, T.K., Gbogbo, F., Owusu, E.H. (2018). An evaluation of the level of human disturbance to waterbirds at Mole National Park in Ghana. Wetlan Eco Manag., 26:704-713.
- Anderson, J.T., Smith, L.M. (2000). Invertebrate response to moist-soil management of playa wetlands. Eco App., 10: 550–558.
- 20. Ali, S. (2002). The book of Indian Birds. Bombay Natural History Society and Oxford University Press, Bombay.
- Spellerberg, I.F., Fedor, P.J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon – Wiener' Index. Glo Eco Bio., 12:177–179.
- Krebs, C.J. (1985). Ecology- the Experimental Analysis of Distribution and Abundance. 3rd edition. Harper Collins Publishers, New York
- Rawat, S.N., Rao, R.J. (2020). Urban bird diversity of Sheopur city, North Madhya Pradesh, India.U.P J Zoo., 41: 1-9.
- Manakadan, R., Pittie, A. (2001). Standardised common and scientific names of the birds of the Indian subcontinent. Buceros,6:1-37.
- 25. IUCN (2020). IUCN Red List of Threatened Species.
- Suryakant, P.N. (2017). Avifauna and Comparative Study of Threatened Birds at Urban Wetlands of Kolhapur, Maharashtra, India. Int J Life Sci., 5:649-660.
- Maleki, S., Baghdadi, N., Rahdari, V. (2019). Which water bird groups need greater habitat conservation measures in a wetland ecosystem?. Eco Engin., 143: 1-9.
- Mukhopadhyay, S., Mazumdar, S. (2017). Composition, diversity and foraging guilds of avifauna in a suburban area of Southern West Bengal, India.Ring, 39:103-120.
- 29. Harisha, M.N., Hosetti, B.B. (2017). Conservation status, threats and diversity of wetland birds of Dyamannana lake (Kere), Bhadravathi Taluk, Shivamogga District, Karnataka, India. Envi Eco., 35: 3071-3076.
- VanRees-Siewert, K.L., Dinsmore, J.J. (1996). Influence of wetland age on bird use of restored wetlands in Iowa. Wetlands., 16: 577–582.
- Froneman, A., Mangnall, M.J., Little, R.M., Crowe, T.M. (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiv Con., 10: 251-270.
- 32. Kristin, L., Siewert, V., Dinsmore, J.J. (1996). Influence

of wetland age on bird use of restored wetlands in Iowa. Wetlands, 16: 577-582.

- Hattori, A., Mae, S. (2001). Habitat use and diversity of waterbirds in a coastal lagoon around Lake Biwa, Japan. Eco Res., 16:543–553.
- Anderson, S.L., McGranahan, D.A., Hovick, T.J., Hewitt, A.R. (2019). Passerine and secretive marsh bird responses to cattail management in temperate wetlands. Wetlan Eco Manag., 27: 283-293.
- Brandolin, P.G., Blendinger, P.G. (2015). Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. Wetlan Eco Manag., 24: 93-105.
- Nieoczym, M., Kloskowski, J. (2018). Habitat selection and reproductive success of coot Fulica atra on ponds under different fish size and density conditions. Hydrobio., 820, 267-279.
- Tietje, W.D., Teer , J.G. (2015). Winter feeding ecology of northern shovelers on freshwater and saline wetlands in South Texas. J Wildlife Manag., 60: 843-855.
- Park, S.R., Kim, K.Y., Chung, H., Choi, Y.S., Sung, H.C. (2011). Vertical nest stratification and breeding success in a six mixed-species heronry in Taeseong, Chungbuk, Korea. Ani Cel Sys., 15:85-90.
- Lee, H.J., Yi, J.H., Sung, H.C. (2019). Change in nest site and population size of great cormorants (Phalacrocorax carbo) in relation to different Ardeidae species in inland breeding sites in Korea. J Eco Env., 43: 1-7.
- Boisteau, B., Marion, L. (2007). Habitat use by the Grey Heron (Ardeacinerea) in eastern France. Compt Rend Bio., 330: 629-634.
- 41. Gunaratne, A.M. (2013). Impact of bird feacal matter mediated nutrients on water quality in Anavilundawa reservoir and habitat occupancy and behavior of selected bird species in two reservoirs of Anavilundawa Ramsar Sactuary, Sri Lanka. Dissertation, University of Kelaniya, Kelaniya, Sri Lanka.
- 42. Harrison, J., Worfolk, T. (2011). A field guide to the birds of Sri Lanka. Oxf Uni Press: 219.
- Henkanaththegedara, S.M., Amarasinghe, U.S. (2015). Species diversity of Wetland birds in dry zone seasonal reservoirs in Sri Lanka. Taprobanica, 7: 235-243.
- Pigniczki, C., Nagy, T., Olah, J., Nagy, G.G., Karcza, Z., Schmidt, A. (2019). Breeding, dispersal, migration and conservation of the Black-winged Stilt (Himantopus himantopus) in Hungary. Ornis Hungarica, 27: 1-19.
- 45. Yamaguchi, N.M., Hupp, J.W., Flint, P.L., Pearce, J.M., Shigeta, Y., Shimada, T., Hiraoka, E.N., Higuchi, H. ., (2012). Habitat use and movement patterns of Northern Pintails during spring in northern Japan: the importance of agricultural lands. J Field Ornith, 83: 141-153.
- 46. Zhenming, G., Tianhou, W., Xiao, Z., Wenyu. S. (2006). Seasonal change and habitat selection of shorebird community at the South Yangtze River Mouth and North Hangzhou Bay, China. Acta Eco Sinica, 26:40-47.