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Abstract

The unbalanced motion caused by a peripheral vestibular dysfunction provokes spontaneous nystagmus.
The major problem in Videonystagmography technique (VNG) is how to recognize a vestibular disorder.
In this paper, a novel method is proposed for automatic extraction of Vestibulo-Ocular Response (VOR).
The proposed methodology focuses on features reduction from VNG dataset in order to enhance the
peripheral Vestibular Diseases (VD) diagnosis. The main contribution of the present work is the
proposal of an automatic VD detection scheme which combines an improved feature characterization
procedure and the Fuzzy C-means (FCM) classifier in order to study the latter’s ability in evaluating the
vestibular dysfunction status within a reduced processing time. The use of VNG parameters gives
interesting experimental results that show the effectiveness of the proposed method since up to 92% of
classification accuracy was achieved, which is a significant rate as far as the experts' evaluation is
concerned.
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Introduction
The Vestibular Disorder (VD) generates vertigos caused by a
unilateral variation of vestibule that appears suddenly. That is
why most of the sensory disorders do not generate vertigo, but
only the sensation of being dizzy. It is then easy to confuse
vertigo with false sensation. Thus, the patients who suffered
from these symptoms have to be assessed through the (VNG)
technique for a quantitative assessment. The vestibular
dysfunction evokes vertigo [1] symptom of unilateral
preponderance of the vestibule. Furthermore, this system is
integrated in the oculomotor structure, where the Vestibular
Ocular Reflex (VOR) is a mechanism involved in the rotation
displacement of eye movements (ocular nystagmus) and the
fixation of the target in the fovea.

During the analysis progress of a vestibular disorder, any
improvement in regard to preponderance may be related to the
decline of the reflectivity degree or the advancement of the
central compensation. For the purpose of monitoring vestibular
disorder, a simple eye tracking system is essentially enhanced
where the (VNG) technique of measuring the VOR response is

used to optimize the immediate evaluation and assessment
from the elementary measurements of preponderance,
reflectivity and hypovalence. The problematic area of VNG is
the analysis of vertigo as there is no definitive assessment
using a medical diagnostic strategy. Based on nystagmus
disorder, several studies [2,3] have identified nystagmus
(abnormal eye movement) using the information of the
velocities slow phase as an effective support for a perfect
therapy evaluation (Figure 1). In the work of Bifulco et al. [4],
the authors proposed a sensory stimulation of (VNG) tests
taking into account the temporal parameters of nystagmus
phases. Measurements of VOR [5,6] on the patients affected by
peripheral vestibular disorder are an interesting diagnostic
factor to understand the vestibular system function and the
origin of canal lesion. However, another algorithm developed
by Sauter et al. [7] is used for removing saccadic phases with
Kalman filter method and it is applied for VOR detection in
(VNG) recordings. Another inherent problem that can be
encountered when VNG recordings are processed is the blink
artefacts which are diverse and must be removed using an
accurate algorithm. For instance, Ebisawa et al. [8] reported
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many methods with electro-oculography for removing blinks
noise and detecting the two components of ocular nystagmus.
In addition, referring to the work of Curthoys et al. [9] patients
with vestibular disorders can eliminate fast eye movements
with blink motion. Compared to previous filtering methods,
Ohzeki et al. [10] involved a block matching algorithm
combined with Kalman filter method to avoid problems of eye
position artifacts. Despite the efficacy of this work, this
method is still too complicated to be employed in clinical
diagnosis.

Figure 1. Routine characteristics using two VNG tests.

Based on the efficiency of the standard parameters of VNG
tests and trying to remediate all the above-mentioned
problems, namely saccadic phases of nystagmus and blinking
noise, we describe in this paper an approach that can provide
precise results of VD recognition within a reduced processing
time. Furthermore, a kinetic and caloric test cannot distinguish
all vestibular disorder symptoms given that the VOR response
is too complicated to be assessed. Trying to select all
parameters from the target VNG technique, we are interested in
this work in selecting the most pertinent features that can be
used as a reference for clinical VD evaluation. It is worth
noting that various works treated the same topic as the present
study by carrying out experiments on the disease that used
different methods [11]. However, considering the diversity of
the studied dataset, this can be achieved by applying an
accurate classification using a combination of three features
from all VNG parameters. The obtained results demonstrate
that the selected parameters can be used as dynamic factors to
increase the accuracy of VD analysis and treatment.

In this paper, we propose an automatic technique for
quantitative evaluation of VD condition using (VNG) datasets.
The aim of the proposed method is to facilitate the VD
assessment process by VNG feature extraction, selection and
classification tools. An interesting methodology is applied
based on Fisher’s Linear Discriminant (FLD) analysis for
features reduction. At a later stage, a Fuzzy C-means (FCM) is
used to identify the vestibular disorder from normal topics.

Indeed, the extraction of pertinent features is considered as an
important stage in the improvement of the classification
results. The classification process is greatly enhanced in our
work [13] thanks to the use of the proposed classification
method and its accuracy in providing selected features of VNG
tests (Figure 1). Furthermore, the entire classification method
is employed on several VNG parameters of the database
including sixty subjects including patients affected by
peripheral vestibular diseases and normal subjects. In addition,
the performance of the proposed approach is demonstrated by
the comparison of the Fuzzy C-means (FCM) compared with
Self-Organizing Map (SOM) classifier.

This paper is organized as follows: In section 2, we will
explain the technique used to collect the VNG dataset and the
characterization degree to select the most useful features for
vestibular disorder diagnosis. Section 3 discusses and analyses
the experimental results by comparing the performances of the
proposed method with another methods in literature. Finally,
conclusions and future work are provided in section 4.

Materials and Methods

Database collection
The available database is constituted of 124 subjects.
Considering the illumination of outcome subjects, the used
topics are performed by only 60 patients: 40 confirmed to have
vestibular disorder, and 20 normal. The dataset were collected
from the (VNG) system. This technique uses a CCD camera
mounted on a pair of goggles, which maintain the eye in a dark
environment, to generate a cornea reflection on the pupil and
detect the eye motion while following externally generated
visual stimuli. We proceed by kinetic and caloric tests for basic
measurements of preponderance, reflectivity and hypovalence
towards a better clinical assessment of VD disease.
Furthermore, it is important to note that medical reports are not
always detailed enough as to identify the vestibular
dysfunctions and that a quantification of all VNG parameters is
essential to do so. Through the progress of a vestibular
dysfunction, any enhancement concerning the preponderance
might be associated also with improvements from the central
control, or with the decline of the degree of reflectivity. In the
first scenario, as a result, making a decision of medical and
surgical strategies will always be based upon the simultaneous
evaluation and assessment of many fundamental measurements
that are reflectivity, preponderance, and hypovalence.

VNG measurements
Kinetic reflectivity: gain: The kinetic test evoked by a chair
rotation around the horizontal plane to show the vestibule
response illustrated by abnormal eye motion composed by two
phases: slow phase interrupted by fast reverse phase. The gain
is computed by the following ratio:

Gain=VEye/VHead → (1)

Where VEye and VHead represent respectively the eye and head
velocities.
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In fact, the vestibular cores are not only associated with the
vestibule, but also to the vision and the cervical proprioception.
Therefore, the reflectivity can be studied by varying the
following situations as shown in Figure 2. In the Visio-
Vestibulo-Ocular-Reflex (VVOR) category, the patient
observes visible scenery where the stimulation is related to
visual and vestibular system. For VOR category the patient is
kept in darkness and the stimulation is purely vestibular. In the
Cervico-Ocular Reflex (COR) category the stimulation is
strictly cervical. The kinetic tests measure the nystagmus
intensity by the maximum velocity of the post-rotatory
nystagmus, where the slow phase is the only component that
can follow immediately the end of the chair rotation. The
measured VOR gain [13,14] of the vestibular reflectivity in
normal case is from 0 to 1. However, in some VNG conditions,
patients suffering from vascular problems have a high gain
leading to an overlap with some normal subjects. So, the
kinetic test is not adequate to distinguish pathological patients
from normal ones.

Figure 2. Implemented kinetic characteristics flowchart, where
VVOR: Visio- Vestibular Ocular Reflex; VOR: Vestibular Ocular
Reflex; COR: Cervico Ocular Reflex; RP: The Relative
Preponderance and AP: The Absolute Preponderance.

Relative preponderance: The relative preponderance shows a
fault in the vestibular balance, and its causes are not limited to
a problem or a peripheral vestibular organ. In fact, the source
that might generate a functional asymmetry by oculomotor
response may produce a directional preponderance. And such a
source of disorder may occur by the nystagmus. The Relative
Preponderance (RP) is the directional asymmetry of the
reactional nystagmus in response to symmetrical stimulation,
expressed in percentage by the following equation.�� % = (∑����� −∑�����)∑�����+∑����� × 100 (2)
Where, RNSPV and LNSPV present respectively the cumulative
of the right and left nystagmus slow phase velocities. Referring
to studies in [14,15], the expression of the Absolute
Preponderance (AP) in (°/s) is considered an interesting
parameter in assessing unilateral vestibular syndrome.

Caloric reflectivity: The caloric tests [15] were performed by
stimulation with 30°C and 44°C water irrigation respectively in
the right and left ears for 30 seconds. The reflectivity of both
inner ears is measured from the maximum velocities of
nystagmus eye movement [16] computed 70 s after the
beginning of warm and cold irrigations. This measurement

cannot be compared to the gain of kinetic test because in this
case the stimulation is barely related to the lateral canal. The
caloric test permits three standard measurements.

Absolute directional preponderance: From caloric test, the
absolute directional preponderance presented in (°/s), is a
function of the slow phase velocity of the nystagmus which
corresponds to the leading ear side. The directional
preponderance and canal paresis measured using Jongkees
index formula are based on the difference of maximal slow
phase velocities. The directional preponderance of caloric test
can be measured in two ways; the relative Directional
preponderance (DPc) and the Absolute Directional
preponderance (ADPc). Relating to Jongkees formula [14].���� = �����2− �����22 �����+ ����� = 12 ����� − ����� (3)
Hypovalence: The concept of hypovalence is only reserved for
the vestibular analysis using caloric test in order to evaluate
each vestibular system separately. For both ears, the reaction of
caloric stimulation is revealed by a sensory fault if unilateral
vestibular lesion is detected. According to the equation of
Jongkees formula [14], and just referring to the most reflective
ear.

H=(PRE-NRE) × 100/PRE → (4)

Where PRE and NRE are respectively the positive and negative
reflective ears. In fact, in the case of ideal Hypovalence, H
value is equal to 100%. The Negative Reflective Ear (NRE)
presents the absence of reflectivity response.

Reflectivity: The reflectivity [15] is the ability of the vestibular
system, whether isolated or not, to respond to a stimulation of
the right and left ears irrigated with warm and cold water. From
the cold and warm reactions, the reflectivity of both ears is
computed by the sum of the maximum slow phase velocities
SPVmax with the directional preponderance DPC (°/s), which is
more or less predictable. The expression of reflectivity is
characterized by a preponderance interference expressed as
follows.

Ref=(SPVmax warmtest+DPC)+(SPVmax coldest-DPC) → (5)

Pertinent VNG feature characterization and
automatic VD classification
Feature selection using independent component analysis
(ICA): The idea of feature extraction for accurate VD
evaluation represents difficult task towards achieving relevant
categorization strategy (healthy or pathological). It is worth
noting that there sensory disorders are not discussed in depth
since only few papers treated [16-18] the VD diagnosis based
on nystagmus signals analysis. On the other hand, in clinical
practice, the practitioner should take a lot of conditions into
account before interpreting the clinical implication of all VNG
measurements and deciding if the VD seems to be situated on
the side that responds the least to the caloric and kinetic
stimulation.

Automated approach for vestibular disorder diagnosis based on clinical VNG feature selection and fuzzy clustering

Biomed Res 2018 Volume 29 Issue 7 1507



In several works the evaluation of VNG tests can be computed
using the amplitude of slow phase velocity and the saccadic
phase (fast phase), and it can be used as standard information
in time and frequency domains. Therefore, there is not much
scientific explanation for the selection of most efficient
attributes for vestibular disorder analysis. For this reason, and
in order to define pertinent information within VNG datasets,
this study proposes to extract the most significant features for
VD recognition using the Independent Component Analysis
(ICA). In fact, the main idea of the proposed method consists
in the detection of the relevant combination from six extracted
VNG features by evaluating the ICA criterion.

The ICA method [19,20] is a statistical algorithm used to
describe hidden features that combine multidimensional sets of
signals and variables. The multivariate variables are
particularly supposed to be a linear or nonlinear mixture of
various indefinite variables. The combination system is also
unknown. Thus, these variables are characterized as
Independent Components (ICs) with a mutual independence
and non-Gaussian distribution.

An original n-dimensional signal X is considered as an m-
dimensional signal through the transform matrix A. X
represented by the following equation.

X=AS → (6)

Where A is a combination matrix that illustrates the link
between the original and the mixed signals. In the first step, A
and S are unknown, and the aim of ICA algorithm is to
estimate them using the known information shown in X.
Equation 7 shows that S̃, the approximation of S, can be
derived by multiplying X and the separating matrix W, which is
equal to the inverse of the matrix A. The (ICs) are the result of
the output of ICA. As illustrated in Equation 7, the variations
created by the stimulus of interest can be reconstructed by
multiplying its corresponding vector Ŝ and A (W-1)

S̀=WX=A-1X → (7)

W-1S̀=AS̀=X → (8)

Two pre-processing steps are employed before using the ICA
process for the observed data matrix X. Firstly, the mean of the
data is removed in order to get a zero-mean matrix. Then, the
original X is linearly changed to a matrix X% where the
correlation matrix of X% is equal to the unity (i.e., {E=XX
%T=I}, where the operation {.} gives the standard value. For
the linear transformation of the original matrix X, the method is
called whitening X where the eigenvalue is decomposed from
the covariance matrix E={XX%}=(EDET), where D is the
diagonal matrix of its eigenvalues, and E is the orthogonal
matrix of eigenvectors of E={XX%T}. Therefore, whitening can
be made using X%=(ED-1/2 ET) X.

The independent component analysis is based on the
distribution of the independent variable which is calculated
according to as a non-Gaussian function. The process is to
recognize the distribution of the independent variable. We can
apply the Fast ICA, which is based on a fixed-point method

with an objective distribution function of maximizing the non-
Gaussianity.

As referred to the work of Smulko et al. [21], the deviations
from Gaussian distribution is computed by kurtosis and
skewness. These parameters are measured for a discrete-time
random process. The kurtosis computes the relative peakedness
of the Gaussian distribution. Whereas, the skewness presents
the degree of its symmetry distribution. Both measures value
are equal to zero for a Gaussian representation.

However, in order to test the non-Gaussianity of stochastic
variables, the bispectrum function is an interesting method that
presents a second-order Fourier transform of the third-order
cummulant. Hence, Smulko et al. used the bispectral method to
analyse the distribution of their recording dataset. The
computed bispectrum function was non-zero only around the
low frequencies, indicating that the non-Gaussian information
is located at low frequencies which required a lower sampling
frequency. In this field, it is an important to note that the
bispectral approach shows only the non-Gaussian components
which are statistically independent, in the recorded stochastic
process, and the Gaussian components are removed.

FCM clustering for VD classification: Fuzzy C-Means
classifier (FCM) is a widely-applied approach for classification
system. This unsupervised technique can be employed for VD
recognition. In fact, the classification accuracy is much
enhanced for all vestibular diagnosis conditions by the use of
methodologies based on feature characterization and
classification tools. Fig.3 shows the proposed unsupervised
fuzzy method stages in order to divide the dataset into two
categories (VD+ and VD-) using only three independent
components among six original features. This can supply well-
organized results in VD recognition with a reduced computing
time.

The FCM algorithm [22,23] is based on the ratio of
maximizing the inter-class distance and minimizing the intra-
class distance; by separating the center points of different
classes. Taking into account the overlapping partitions, the
feature vectors of the dataset is not only related to one class but
it is common to the two classes (VD+ and VD-). As shown in
Figure 3, the classification procedure clearly improves the
separation phase between datasets and avoids the membership
between VD- and VD+ data zones. The fuzzy classification
process allows minimizing a set of VNG data points which the
studied points belonging to the same class present the closest
than the points belonging to other group (VD+ or VD-).
Moreover, in the case of two closely-related classes, the
degrees of membership in these classes are evenly very similar.
If the two classes were merged, these subjects have the highest
degrees of membership. As illustrated in Figure 4, the accurate
VD classification into two topics (VD+ and VD-) comprise
between the minimum state of data (0.37) belonging to
abnormal cases and p state to the maximum (1.58) belonging
normal cases. Note that, feature mean states present the
average of six VNG parameters. However, p value
demonstrates the unknown zone having undefined interval,
identifying the fuzzy area.
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FCM algorithm is an unsupervised classification method that
has been effectively applied to feature analysis and clustering
based on fuzzy concept to overcome the problem of fuzzy logic
[24]. FCM algorithm is based on an optimization iteration
which minimizes the partition function of dataset from the two
categories: VD and normal; x=(x1, x2, x3,....., xn)T where n is
the number of the dataset used in the classification step
followed by:

�� �, � =∑� = 1
� ∑� = 1

� ���� ��− �� 2 (9)
xk represents the features of n subject to be partitioned to c
classes, ui

k denotes the membership of features uk in the ith
class, m is a weighting parameter that controls the fuzziness of
the membership function, vi is the ith class center. When
features close to their class centroid are designated with high
membership values, the cost function will be minimized. The
membership functions are controlled in the range (0, 1) where
∑C

i=1 uik=1. For each centroid estimation, the FCM algorithm
converges to a solution for class center vi representing the local
minimum of the cost function (Table 1).

Figure 3. The proposed fuzzy classification process.

Figure 4. Fuzzy clustering principle.

Experimental Results and Discussions

ICA evaluation for VNG feature reduction
To get accurate classification results, the reduced feature
vectors extracted from VNG tests are constructed the dataset of
the network inputs. In order to obtain new independent
variables for a relevant representation of our dataset, the fuzzy
clustering algorithm was applied to maximize the difference
between features in the inputs set.

Hence, the precursory pre-processing phase consists of an
important preposition for the VNG features comparison. As
revealed in Table 2, the performance of ICA model is

compared to those of Linear Discriminant Analysis algorithm
(LDA) by selecting the highest-priority features in order to
involve the diagnosis of VD disease. Using the ICA method,
the obtained results are prepared by computing the total
characterization of each features number in terms of IC with
non-Gaussian distribution. In order to not lose information and
to optimize performance view in time reduction, it was
concluded that we can have enough reliable results using only
three features instead six. Table 2 demonstrates that the three
independent components among six extracted from the kinetic
and caloric test can be the most useful for VD diagnosis. This
work is considered special comparing to all used measurements
from previous works [19].

VD classification results using FCM algorithm
The developed work is included within the structure of the
unsupervised classification technique, which is correlated to
the research of identical groups. Indeed, in order to find
optimal and independent parameters for the classification
procedure, we studied the sensitivity of the fuzzy clustering
method on the resulting classification accuracy by varying the
fuzzy degree “m” between selected features. Referring to Table
3, the proposed ICA-FCM algorithm provides the optimum
separation performance when the fuzzy degree value is set to
1.2. The used FCM contains important hyperparameters: an
input including 3 features according to the ICA characteristics,
a class number (c) equal to 2 (30 VD+, 30 VD-), a fuzzy degree
(m=1.2) and a Convergence Threshold (CT=10-3).
Consequently, if the output is zero, the topic is VD+, if it is
one; the topic is considered VD-.

In this section, a comparative classification study using ICA-
FCM method with those obtained by The Self-Organizing Map
(SOM) classifier [25,26], FCM, ICA-SOM, LDA-SOM, LDA-
FCM; is demonstrated. The Self-Organizing Map (SOM) is an
entirely connected single-layer linear network, where the
output is usually structured in a 2-dimensional organization of
nodes. The basis of the SOM is the soft competition between
the nodes in the output layer; where the node (the winner) and
their neighbors are updated. Self-organizing networks have the
possibility to learn and identify the correlation and regularity in
the inputs, to predict the selected data.

From several experiments made at this stage, we conclude that
the classification efficiency achieved by the Self-Organizing
Map (SOM) classifier is not satisfactory using the extracted
features. This is probably due to the correlation between VNG
features. For this reason, we proceed in the second stage by
reducing the original parameters with ICA preprocessing in
order to get more representative and independent variables that
describe the VNG parameters.

To exhibit the performance of the proposed method, multiple
methods such as FCM, Self-Organizing Map (SOM), LDA-
SOM, ICA-SOM, LDA-FCM are also achieved. Experimental
results prove that the proposed approach is very promising
using both reduced features (ICA) and unsupervised classifier
(FCM) for an efficient VD assessment.

Automated approach for vestibular disorder diagnosis based on clinical VNG feature selection and fuzzy clustering
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The combined ICA and SOM unsupervised classifier is
developed to decrease the remarkable overlap for hopeful
classification rate more precisely. Hence, it appears a great
optimization of the SOM structure. In order to get a reasonable
evaluation of VD, the FCM structures were designed during
the random-selected experiments using the new independent
features that define the optimal classification results of the
FCM classifier with the reduced error in the classification
phase. Table 2 shows the resulted percentages of SE, SP and
AC for the complete VNG database of the studied FCM
classifier. Indeed, we prove that the ICA-FCM classification
method is more accurate than SOM, FCM, LDA-SOM, LDA-
FCM and ICA-SOM classifiers for the two VNG classes in two
sets of experiments. From these results, it gives the best
average accuracy of about 92.24% with a standard deviation
less than 2% for VNG database, compared to accuracy rates
obtained with SOM, FCM, ICA-SOM, LDA-SOM, and LDA-
FCM of about 79.18%, 80.74%, 86.64% 85.02, and 89.4%,
respectively. Simulation results highlight the robustness of the
proposed method using large VNG dataset.

The projected approach was able to estimate VD diagnosis
with an interesting accuracy result in the total signal database
for detecting vertigo disorder even at an early stage. Hence, to
demonstrate the strength of the given relevant features,
different classification approaches have been applied. Equally,
the reduced processing time and remarkable overlap
assemblage are concurrently resolved.

The employed parameters in Table 2 are offered by the
following equations:

• The Accuracy Classification (AC) is the ratio of the total
numbers of correctly classified test samples to the total
number of test samples.�� = ��+ ����+ ��+ ��+ �� (14)

• In order to provide the assessment of our classifiers
performances, statistical analysis in terms of Sensitivity
(SE), and Specificity (SP) are applied too.

SE=TP/FN+TP → (15)

SP=TN/TN+FP → (16)

Where TP and TN represent respectively the number of true
positives and true negatives, FP is the number of false
positives and FN is the number of false negatives. A Receiver
Operating Characteristic (ROC) curve was used to validate the
classification results [27]. Figure 5 shows the ROC curve
analysis technique of our proposed ICA-FCM approach. It is
obvious that ICA-FCM system gives accurate results in terms
of Sensitivity (SE) and Specificity (SP) respectively with mean
average of 93.96%, 92.52%. Hence, we should notice that
these results used the significant features of VNG dataset
which validates the effectiveness of our strategy. Finally, one
can conclude that the proposed VNG analysis method can
consistently be used to assist doctors by providing a second
opinion which may be of great help in their diagnosis.

The biggest difficulty in the assessment of VD is that there is
no significant indicative to be used in the alternative diagnosis
[28]. Thereby, it is essential to prove that nystagmus has been
correctly identified by analyzing the trace and establishing
different clinical parameters. The employed parameters using
ICA pre-process can be used as a helpful support for a
pertinent diagnosis evaluation.

Figure 5. Validation of the proposed FCM method using ROC curves.

Table 1. Algorithm of FCM for VD classification.

Furthermore, diagnosis information on VD [27] is severely
made, without integrating analysis conditions or neurological
opinion; no apparent VD sign are comprehensive. Hence, the
evaluation of VNG tests depends on the variability of the
individual VOR response. Thus, the usual signs of this VD
disease do not indicate significant information from simple eye
movement’s evaluation [29]. Currently, the diagnosis of VD
disease stills a challenge since the usual signs of VD do not
illustrate the real vestibular response. Because of these clinical
problems and to present an automated diagnosis system of VD
and to avoid excessive examinations, an intelligent analysis of
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vertigo can be considerably useful sign in distinguishing VD
from other normal cases [27].

Consequently, this study is considered exceptional by
comparing the number of treated measurements and tests with
previous works [28,30]. With these results, we conclude that

the proposed preprocessing and classification method can
consistently be used to assist ENT doctors by providing a
second judgment for indefinite cases that need further attention
[31].

Table 2. Performance comparison of the different classifiers in terms of Sensitivity (SE), Specificity (SP) and Accuracy (AC) on the complete image
database (mean values ± standard deviation).

VNG datasets Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

SOM

SE (%) 78.2 ± 2.6 79.5 ± 2.3 76.3 ± 2.7 78.3 ± 2.4 75.2 ± 2.7

SP (%) 81.5 ± 1.8 80.7 ± 2.1 83.1 ± 1.7 82.3 ± 1.4 84.7 ± 1.5

AC (%) 78.5 ± 2.4 80.2 ± 1.9 79.2 ± 2.2 79.9 ± 2.4 78.1 ± 2.5

FCM

SE (%) 81.4 ± 1.9 82.7 ± 1.9 79.5 ± 2.4 80.3 ± 2.1 81.8 ± 1.9

SP (%) 83.2 ± 1.7 83.7 ± 1.8 82.6 ± 1.7 81.4 ± 1.7 81.9 ± 1.7

AC (%) 80.7 ± 1.4 81.4 ± 1.6 79.2 ± 1.8 81.3 ± 1.4 81.1 ± 1.9

ICA-SOM

SE (%) 84.6 ± 1.8 87.2 ± 1.7 88.5 ± 1.3 87.1 ± 1.7 85.6 ± 1.5

SP (%) 87.6 ± 1.3 88.3 ± 1.2 89.1 ± 1.3 88.7 ± 1.5 86.1 ± 1.2

AC (%) 86.2 ± 1.4 85.7 ± 1.7 87.9 ± 1.6 86.6 ± 1.4 86.8 ± 1.6

LDA-SOM

SE (%) 87.2 ± 1.1 86.5 ± 1.4 86.3 ± 1.2 88.9 ± 1.1 87.2 ± 1.2

SP (%) 87.5 ± 1.2 86.7 ± 1.3 88.1 ± 1.5 89.3 ± 1.4 87.7 ± 1.1

AC (%) 84.7 ± 1.9 84.2 ± 1.9 86.2 ± 1.6 84.5 ± 1.5 85.5 ± 1.6

LDA-FCM

SE (%) 88.3 ± 1.2 90.5 ± 1.1 90.7 ± 1.4 91.1 ± 1.1 89.7 ± 1.5

SP (%) 89.6 ± 1.5 91.5 ± 1.4 91.6 ± 1.2 92.4 ± 1.1 90.3 ± 1.3

AC (%) 88.7 ± 1.5 89.4 ± 1.6 89.2 ± 1.8 91.3 ± 1.4 88.4 ± 1.5

ICA-FCM

SE (%) 91.8 ± 1.4 93.2 ± 0.9 92.8 ± 1.2 92.3 ± 1.2 92.5 ± 1.1

SP (%) 94.6 ± 0.5 94.3 ± 0.4 93.1 ± 0.8 94.7 ± 0.3 93.6 ± 0.6

AC (%) 91.8 ± 1.1 91.5 ± 1.2 92.9 ± 0.9 92.2 ± 1.3 92.8 ± 0.8

Table 3. Influence of fuzzy clustering results using different fuzzy degree values (mean values ± standard deviation).

 Classification FCM technique

Accuracy m=1.1 m=1.2 m=1.5 m=1.8 m=2.0

VNG Dataset Experiment 1 80.2 ± 1.2 92.6 ± 0.3 85.6 ± 1.2 81.4 ± 1.7 79.2 ± 1.9

Experiment 2 77.6 ± 2.4 93.2 ± 0.2 86.1 ± 1.1 81.9 ± 1.9 80.7 ± 1.5

Experiment 3 80.3 ± 1.3 90.5 ± 0.4 84.2 ± 1.4 83.6 ± 1.1 82.4 ± 1.2

Experiment 4 76.1 ± 2.1 91.9 ± 0.8 83.7 ± 1.1 82.1 ± 1.2 81.9 ± 1.8

Experiment 5 81.3 ± 1.5 90.5 ± 0.6 84.5 ± 1.5 82.9 ± 1.5 81.5 ± 1.5

Mean 79.9 ± 1.7 90.3 ± 0.46 84.82 ± 1.28 82.38 ± 1.5 81.14 ± 1.58

Conclusions and Future Works
In this work, an advanced approach for vestibular disorder
based on VNG features is proposed. First, VNG measurements
were automatically extracted using caloric and kinetic
techniques. Second, an important method consists in the

pertinent features selection from VNG dataset in order to
enhance the peripheral Vestibular Diseases (VD) diagnosis.
The proposed strategy gives high-quality resulting feature
characterization and reduction when compared to other
techniques. The extracted VNG features are classified into two
classes focused on the combination of an independent
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component analysis preprocessing and fuzzy-C means
technique. This intelligent system can accurately separate the
dataset into different groups: VD- and VD+.

The proposed method was compared with some existing
improved algorithm in order to get significant results in terms
of classification accuracy, sensitivity and specificity.
Experimental results exhibit that the combined ICA-FCM
process can frequently classify normal and abnormal subjects
to improve the diagnosis of vestibular disease. As future work,
more dataset will be investigated to develop the classification
stage. Also, for the vestibular disorder diagnosis, the
conception of an expert system is the aim of progress works.
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